This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of MaedaMaeda p. 62. (Contributed by NM, 17-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmap0.z | |- .0. = ( 0. ` K ) |
|
| pmap0.m | |- M = ( pmap ` K ) |
||
| Assertion | pmap0 | |- ( K e. AtLat -> ( M ` .0. ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmap0.z | |- .0. = ( 0. ` K ) |
|
| 2 | pmap0.m | |- M = ( pmap ` K ) |
|
| 3 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 4 | 3 1 | atl0cl | |- ( K e. AtLat -> .0. e. ( Base ` K ) ) |
| 5 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 6 | eqid | |- ( Atoms ` K ) = ( Atoms ` K ) |
|
| 7 | 3 5 6 2 | pmapval | |- ( ( K e. AtLat /\ .0. e. ( Base ` K ) ) -> ( M ` .0. ) = { a e. ( Atoms ` K ) | a ( le ` K ) .0. } ) |
| 8 | 4 7 | mpdan | |- ( K e. AtLat -> ( M ` .0. ) = { a e. ( Atoms ` K ) | a ( le ` K ) .0. } ) |
| 9 | 5 1 6 | atnle0 | |- ( ( K e. AtLat /\ a e. ( Atoms ` K ) ) -> -. a ( le ` K ) .0. ) |
| 10 | 9 | nrexdv | |- ( K e. AtLat -> -. E. a e. ( Atoms ` K ) a ( le ` K ) .0. ) |
| 11 | rabn0 | |- ( { a e. ( Atoms ` K ) | a ( le ` K ) .0. } =/= (/) <-> E. a e. ( Atoms ` K ) a ( le ` K ) .0. ) |
|
| 12 | 10 11 | sylnibr | |- ( K e. AtLat -> -. { a e. ( Atoms ` K ) | a ( le ` K ) .0. } =/= (/) ) |
| 13 | nne | |- ( -. { a e. ( Atoms ` K ) | a ( le ` K ) .0. } =/= (/) <-> { a e. ( Atoms ` K ) | a ( le ` K ) .0. } = (/) ) |
|
| 14 | 12 13 | sylib | |- ( K e. AtLat -> { a e. ( Atoms ` K ) | a ( le ` K ) .0. } = (/) ) |
| 15 | 8 14 | eqtrd | |- ( K e. AtLat -> ( M ` .0. ) = (/) ) |