This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commuted version of cvrat4 . (Contributed by NM, 28-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrat4.b | |- B = ( Base ` K ) |
|
| cvrat4.l | |- .<_ = ( le ` K ) |
||
| cvrat4.j | |- .\/ = ( join ` K ) |
||
| cvrat4.z | |- .0. = ( 0. ` K ) |
||
| cvrat4.a | |- A = ( Atoms ` K ) |
||
| Assertion | cvrat42 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( r .\/ Q ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrat4.b | |- B = ( Base ` K ) |
|
| 2 | cvrat4.l | |- .<_ = ( le ` K ) |
|
| 3 | cvrat4.j | |- .\/ = ( join ` K ) |
|
| 4 | cvrat4.z | |- .0. = ( 0. ` K ) |
|
| 5 | cvrat4.a | |- A = ( Atoms ` K ) |
|
| 6 | 1 2 3 4 5 | cvrat4 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) ) ) |
| 7 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> K e. Lat ) |
| 9 | simplr3 | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> Q e. A ) |
|
| 10 | 1 5 | atbase | |- ( Q e. A -> Q e. B ) |
| 11 | 9 10 | syl | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> Q e. B ) |
| 12 | 1 5 | atbase | |- ( r e. A -> r e. B ) |
| 13 | 12 | adantl | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> r e. B ) |
| 14 | 1 3 | latjcom | |- ( ( K e. Lat /\ Q e. B /\ r e. B ) -> ( Q .\/ r ) = ( r .\/ Q ) ) |
| 15 | 8 11 13 14 | syl3anc | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> ( Q .\/ r ) = ( r .\/ Q ) ) |
| 16 | 15 | breq2d | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> ( P .<_ ( Q .\/ r ) <-> P .<_ ( r .\/ Q ) ) ) |
| 17 | 16 | anbi2d | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ r e. A ) -> ( ( r .<_ X /\ P .<_ ( Q .\/ r ) ) <-> ( r .<_ X /\ P .<_ ( r .\/ Q ) ) ) ) |
| 18 | 17 | rexbidva | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( E. r e. A ( r .<_ X /\ P .<_ ( Q .\/ r ) ) <-> E. r e. A ( r .<_ X /\ P .<_ ( r .\/ Q ) ) ) ) |
| 19 | 6 18 | sylibd | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X =/= .0. /\ P .<_ ( X .\/ Q ) ) -> E. r e. A ( r .<_ X /\ P .<_ ( r .\/ Q ) ) ) ) |