This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapjat.b | |- B = ( Base ` K ) |
|
| pmapjat.j | |- .\/ = ( join ` K ) |
||
| pmapjat.a | |- A = ( Atoms ` K ) |
||
| pmapjat.m | |- M = ( pmap ` K ) |
||
| pmapjat.p | |- .+ = ( +P ` K ) |
||
| Assertion | pmapjat2 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( Q .\/ X ) ) = ( ( M ` Q ) .+ ( M ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapjat.b | |- B = ( Base ` K ) |
|
| 2 | pmapjat.j | |- .\/ = ( join ` K ) |
|
| 3 | pmapjat.a | |- A = ( Atoms ` K ) |
|
| 4 | pmapjat.m | |- M = ( pmap ` K ) |
|
| 5 | pmapjat.p | |- .+ = ( +P ` K ) |
|
| 6 | 1 2 3 4 5 | pmapjat1 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( X .\/ Q ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
| 7 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> K e. Lat ) |
| 9 | 1 3 | atbase | |- ( Q e. A -> Q e. B ) |
| 10 | 9 | 3ad2ant3 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> Q e. B ) |
| 11 | simp2 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> X e. B ) |
|
| 12 | 1 2 | latjcom | |- ( ( K e. Lat /\ Q e. B /\ X e. B ) -> ( Q .\/ X ) = ( X .\/ Q ) ) |
| 13 | 8 10 11 12 | syl3anc | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( Q .\/ X ) = ( X .\/ Q ) ) |
| 14 | 13 | fveq2d | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( Q .\/ X ) ) = ( M ` ( X .\/ Q ) ) ) |
| 15 | simp1 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> K e. HL ) |
|
| 16 | 1 3 4 | pmapssat | |- ( ( K e. HL /\ Q e. B ) -> ( M ` Q ) C_ A ) |
| 17 | 15 10 16 | syl2anc | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` Q ) C_ A ) |
| 18 | 1 3 4 | pmapssat | |- ( ( K e. HL /\ X e. B ) -> ( M ` X ) C_ A ) |
| 19 | 18 | 3adant3 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` X ) C_ A ) |
| 20 | 3 5 | paddcom | |- ( ( K e. Lat /\ ( M ` Q ) C_ A /\ ( M ` X ) C_ A ) -> ( ( M ` Q ) .+ ( M ` X ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
| 21 | 8 17 19 20 | syl3anc | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( ( M ` Q ) .+ ( M ` X ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
| 22 | 6 14 21 | 3eqtr4d | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( Q .\/ X ) ) = ( ( M ` Q ) .+ ( M ` X ) ) ) |