This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of projective subspace sum of nonempty sets. (Contributed by NM, 3-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | |- .<_ = ( le ` K ) |
|
| paddfval.j | |- .\/ = ( join ` K ) |
||
| paddfval.a | |- A = ( Atoms ` K ) |
||
| paddfval.p | |- .+ = ( +P ` K ) |
||
| Assertion | elpaddn0 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. ( X .+ Y ) <-> ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | |- .<_ = ( le ` K ) |
|
| 2 | paddfval.j | |- .\/ = ( join ` K ) |
|
| 3 | paddfval.a | |- A = ( Atoms ` K ) |
|
| 4 | paddfval.p | |- .+ = ( +P ` K ) |
|
| 5 | 1 2 3 4 | elpadd | |- ( ( K e. Lat /\ X C_ A /\ Y C_ A ) -> ( S e. ( X .+ Y ) <-> ( ( S e. X \/ S e. Y ) \/ ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) ) |
| 6 | 5 | adantr | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. ( X .+ Y ) <-> ( ( S e. X \/ S e. Y ) \/ ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) ) |
| 7 | simpl2 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> X C_ A ) |
|
| 8 | 7 | sseld | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. X -> S e. A ) ) |
| 9 | simpll1 | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. X ) /\ r e. Y ) -> K e. Lat ) |
|
| 10 | ssel2 | |- ( ( X C_ A /\ S e. X ) -> S e. A ) |
|
| 11 | 10 | 3ad2antl2 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. X ) -> S e. A ) |
| 12 | 11 | adantr | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. X ) /\ r e. Y ) -> S e. A ) |
| 13 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 14 | 13 3 | atbase | |- ( S e. A -> S e. ( Base ` K ) ) |
| 15 | 12 14 | syl | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. X ) /\ r e. Y ) -> S e. ( Base ` K ) ) |
| 16 | simpl3 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. X ) -> Y C_ A ) |
|
| 17 | 16 | sselda | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. X ) /\ r e. Y ) -> r e. A ) |
| 18 | 13 3 | atbase | |- ( r e. A -> r e. ( Base ` K ) ) |
| 19 | 17 18 | syl | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. X ) /\ r e. Y ) -> r e. ( Base ` K ) ) |
| 20 | 13 1 2 | latlej1 | |- ( ( K e. Lat /\ S e. ( Base ` K ) /\ r e. ( Base ` K ) ) -> S .<_ ( S .\/ r ) ) |
| 21 | 9 15 19 20 | syl3anc | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. X ) /\ r e. Y ) -> S .<_ ( S .\/ r ) ) |
| 22 | 21 | reximdva0 | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. X ) /\ Y =/= (/) ) -> E. r e. Y S .<_ ( S .\/ r ) ) |
| 23 | 22 | exp31 | |- ( ( K e. Lat /\ X C_ A /\ Y C_ A ) -> ( S e. X -> ( Y =/= (/) -> E. r e. Y S .<_ ( S .\/ r ) ) ) ) |
| 24 | 23 | com23 | |- ( ( K e. Lat /\ X C_ A /\ Y C_ A ) -> ( Y =/= (/) -> ( S e. X -> E. r e. Y S .<_ ( S .\/ r ) ) ) ) |
| 25 | 24 | imp | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ Y =/= (/) ) -> ( S e. X -> E. r e. Y S .<_ ( S .\/ r ) ) ) |
| 26 | 25 | ancld | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ Y =/= (/) ) -> ( S e. X -> ( S e. X /\ E. r e. Y S .<_ ( S .\/ r ) ) ) ) |
| 27 | oveq1 | |- ( q = S -> ( q .\/ r ) = ( S .\/ r ) ) |
|
| 28 | 27 | breq2d | |- ( q = S -> ( S .<_ ( q .\/ r ) <-> S .<_ ( S .\/ r ) ) ) |
| 29 | 28 | rexbidv | |- ( q = S -> ( E. r e. Y S .<_ ( q .\/ r ) <-> E. r e. Y S .<_ ( S .\/ r ) ) ) |
| 30 | 29 | rspcev | |- ( ( S e. X /\ E. r e. Y S .<_ ( S .\/ r ) ) -> E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) |
| 31 | 26 30 | syl6 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ Y =/= (/) ) -> ( S e. X -> E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) |
| 32 | 31 | adantrl | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. X -> E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) |
| 33 | 8 32 | jcad | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. X -> ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) |
| 34 | simpl3 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> Y C_ A ) |
|
| 35 | 34 | sseld | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. Y -> S e. A ) ) |
| 36 | simpll1 | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ q e. X ) /\ S e. Y ) -> K e. Lat ) |
|
| 37 | ssel2 | |- ( ( X C_ A /\ q e. X ) -> q e. A ) |
|
| 38 | 37 | 3ad2antl2 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ q e. X ) -> q e. A ) |
| 39 | 38 | adantr | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ q e. X ) /\ S e. Y ) -> q e. A ) |
| 40 | 13 3 | atbase | |- ( q e. A -> q e. ( Base ` K ) ) |
| 41 | 39 40 | syl | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ q e. X ) /\ S e. Y ) -> q e. ( Base ` K ) ) |
| 42 | simpl3 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ q e. X ) -> Y C_ A ) |
|
| 43 | 42 | sselda | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ q e. X ) /\ S e. Y ) -> S e. A ) |
| 44 | 43 14 | syl | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ q e. X ) /\ S e. Y ) -> S e. ( Base ` K ) ) |
| 45 | 13 1 2 | latlej2 | |- ( ( K e. Lat /\ q e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> S .<_ ( q .\/ S ) ) |
| 46 | 36 41 44 45 | syl3anc | |- ( ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ q e. X ) /\ S e. Y ) -> S .<_ ( q .\/ S ) ) |
| 47 | 46 | ex | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ q e. X ) -> ( S e. Y -> S .<_ ( q .\/ S ) ) ) |
| 48 | 47 | ancld | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ q e. X ) -> ( S e. Y -> ( S e. Y /\ S .<_ ( q .\/ S ) ) ) ) |
| 49 | oveq2 | |- ( r = S -> ( q .\/ r ) = ( q .\/ S ) ) |
|
| 50 | 49 | breq2d | |- ( r = S -> ( S .<_ ( q .\/ r ) <-> S .<_ ( q .\/ S ) ) ) |
| 51 | 50 | rspcev | |- ( ( S e. Y /\ S .<_ ( q .\/ S ) ) -> E. r e. Y S .<_ ( q .\/ r ) ) |
| 52 | 48 51 | syl6 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ q e. X ) -> ( S e. Y -> E. r e. Y S .<_ ( q .\/ r ) ) ) |
| 53 | 52 | impancom | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. Y ) -> ( q e. X -> E. r e. Y S .<_ ( q .\/ r ) ) ) |
| 54 | 53 | ancld | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. Y ) -> ( q e. X -> ( q e. X /\ E. r e. Y S .<_ ( q .\/ r ) ) ) ) |
| 55 | 54 | eximdv | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. Y ) -> ( E. q q e. X -> E. q ( q e. X /\ E. r e. Y S .<_ ( q .\/ r ) ) ) ) |
| 56 | n0 | |- ( X =/= (/) <-> E. q q e. X ) |
|
| 57 | df-rex | |- ( E. q e. X E. r e. Y S .<_ ( q .\/ r ) <-> E. q ( q e. X /\ E. r e. Y S .<_ ( q .\/ r ) ) ) |
|
| 58 | 55 56 57 | 3imtr4g | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ S e. Y ) -> ( X =/= (/) -> E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) |
| 59 | 58 | impancom | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ X =/= (/) ) -> ( S e. Y -> E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) |
| 60 | 59 | adantrr | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. Y -> E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) |
| 61 | 35 60 | jcad | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. Y -> ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) |
| 62 | 33 61 | jaod | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( S e. X \/ S e. Y ) -> ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) |
| 63 | pm4.72 | |- ( ( ( S e. X \/ S e. Y ) -> ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) <-> ( ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) <-> ( ( S e. X \/ S e. Y ) \/ ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) ) |
|
| 64 | 62 63 | sylib | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) <-> ( ( S e. X \/ S e. Y ) \/ ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) ) |
| 65 | 6 64 | bitr4d | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. ( X .+ Y ) <-> ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) |