This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapeq0.b | |- B = ( Base ` K ) |
|
| pmapeq0.z | |- .0. = ( 0. ` K ) |
||
| pmapeq0.m | |- M = ( pmap ` K ) |
||
| Assertion | pmapeq0 | |- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) = (/) <-> X = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapeq0.b | |- B = ( Base ` K ) |
|
| 2 | pmapeq0.z | |- .0. = ( 0. ` K ) |
|
| 3 | pmapeq0.m | |- M = ( pmap ` K ) |
|
| 4 | hlatl | |- ( K e. HL -> K e. AtLat ) |
|
| 5 | 4 | adantr | |- ( ( K e. HL /\ X e. B ) -> K e. AtLat ) |
| 6 | 2 3 | pmap0 | |- ( K e. AtLat -> ( M ` .0. ) = (/) ) |
| 7 | 5 6 | syl | |- ( ( K e. HL /\ X e. B ) -> ( M ` .0. ) = (/) ) |
| 8 | 7 | eqeq2d | |- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) = ( M ` .0. ) <-> ( M ` X ) = (/) ) ) |
| 9 | hlop | |- ( K e. HL -> K e. OP ) |
|
| 10 | 9 | adantr | |- ( ( K e. HL /\ X e. B ) -> K e. OP ) |
| 11 | 1 2 | op0cl | |- ( K e. OP -> .0. e. B ) |
| 12 | 10 11 | syl | |- ( ( K e. HL /\ X e. B ) -> .0. e. B ) |
| 13 | 1 3 | pmap11 | |- ( ( K e. HL /\ X e. B /\ .0. e. B ) -> ( ( M ` X ) = ( M ` .0. ) <-> X = .0. ) ) |
| 14 | 12 13 | mpd3an3 | |- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) = ( M ` .0. ) <-> X = .0. ) ) |
| 15 | 8 14 | bitr3d | |- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) = (/) <-> X = .0. ) ) |