This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atom is a member of the lattice base set (i.e. a lattice element). ( atelch analog.) (Contributed by NM, 10-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atombase.b | |- B = ( Base ` K ) |
|
| atombase.a | |- A = ( Atoms ` K ) |
||
| Assertion | atbase | |- ( P e. A -> P e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atombase.b | |- B = ( Base ` K ) |
|
| 2 | atombase.a | |- A = ( Atoms ` K ) |
|
| 3 | n0i | |- ( P e. A -> -. A = (/) ) |
|
| 4 | 2 | eqeq1i | |- ( A = (/) <-> ( Atoms ` K ) = (/) ) |
| 5 | 3 4 | sylnib | |- ( P e. A -> -. ( Atoms ` K ) = (/) ) |
| 6 | fvprc | |- ( -. K e. _V -> ( Atoms ` K ) = (/) ) |
|
| 7 | 5 6 | nsyl2 | |- ( P e. A -> K e. _V ) |
| 8 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 9 | eqid | |- ( |
|
| 10 | 1 8 9 2 | isat | |- ( K e. _V -> ( P e. A <-> ( P e. B /\ ( 0. ` K ) ( |
| 11 | 10 | simprbda | |- ( ( K e. _V /\ P e. A ) -> P e. B ) |
| 12 | 7 11 | mpancom | |- ( P e. A -> P e. B ) |