This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection meet property. Remark in Kalmbach p. 66. Also Theorem 4.5(i)->(iv) of Beran p. 112. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | |- H e. CH |
|
| pjidm.2 | |- A e. ~H |
||
| pjsslem.1 | |- G e. CH |
||
| Assertion | pjssmii | |- ( H C_ G -> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | |- H e. CH |
|
| 2 | pjidm.2 | |- A e. ~H |
|
| 3 | pjsslem.1 | |- G e. CH |
|
| 4 | 3 2 | pjclii | |- ( ( projh ` G ) ` A ) e. G |
| 5 | 1 2 | pjclii | |- ( ( projh ` H ) ` A ) e. H |
| 6 | ssel | |- ( H C_ G -> ( ( ( projh ` H ) ` A ) e. H -> ( ( projh ` H ) ` A ) e. G ) ) |
|
| 7 | 5 6 | mpi | |- ( H C_ G -> ( ( projh ` H ) ` A ) e. G ) |
| 8 | 3 | chshii | |- G e. SH |
| 9 | shsubcl | |- ( ( G e. SH /\ ( ( projh ` G ) ` A ) e. G /\ ( ( projh ` H ) ` A ) e. G ) -> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. G ) |
|
| 10 | 8 9 | mp3an1 | |- ( ( ( ( projh ` G ) ` A ) e. G /\ ( ( projh ` H ) ` A ) e. G ) -> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. G ) |
| 11 | 4 7 10 | sylancr | |- ( H C_ G -> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. G ) |
| 12 | 1 2 3 | pjsslem | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) |
| 13 | 1 3 | chsscon3i | |- ( H C_ G <-> ( _|_ ` G ) C_ ( _|_ ` H ) ) |
| 14 | 1 | choccli | |- ( _|_ ` H ) e. CH |
| 15 | 14 2 | pjclii | |- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
| 16 | 3 | choccli | |- ( _|_ ` G ) e. CH |
| 17 | 16 2 | pjclii | |- ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) |
| 18 | ssel | |- ( ( _|_ ` G ) C_ ( _|_ ` H ) -> ( ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) ) |
|
| 19 | 17 18 | mpi | |- ( ( _|_ ` G ) C_ ( _|_ ` H ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) |
| 20 | 14 | chshii | |- ( _|_ ` H ) e. SH |
| 21 | shsubcl | |- ( ( ( _|_ ` H ) e. SH /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
|
| 22 | 20 21 | mp3an1 | |- ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
| 23 | 15 19 22 | sylancr | |- ( ( _|_ ` G ) C_ ( _|_ ` H ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
| 24 | 13 23 | sylbi | |- ( H C_ G -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
| 25 | 12 24 | eqeltrrid | |- ( H C_ G -> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) ) |
| 26 | 11 25 | jca | |- ( H C_ G -> ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. G /\ ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) ) ) |
| 27 | elin | |- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( G i^i ( _|_ ` H ) ) <-> ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. G /\ ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) ) ) |
|
| 28 | 3 14 | chincli | |- ( G i^i ( _|_ ` H ) ) e. CH |
| 29 | 3 2 | pjhclii | |- ( ( projh ` G ) ` A ) e. ~H |
| 30 | 1 2 | pjhclii | |- ( ( projh ` H ) ` A ) e. ~H |
| 31 | 29 30 | hvsubcli | |- ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ~H |
| 32 | 28 31 | pjchi | |- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( G i^i ( _|_ ` H ) ) <-> ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
| 33 | 27 32 | bitr3i | |- ( ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. G /\ ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) ) <-> ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
| 34 | 26 33 | sylib | |- ( H C_ G -> ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
| 35 | 28 29 30 | pjsubii | |- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) |
| 36 | 28 29 | pjhclii | |- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) e. ~H |
| 37 | 28 30 | pjhclii | |- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) e. ~H |
| 38 | 36 37 | hvsubvali | |- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) +h ( -u 1 .h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) ) |
| 39 | inss1 | |- ( G i^i ( _|_ ` H ) ) C_ G |
|
| 40 | 28 2 3 | pjss2i | |- ( ( G i^i ( _|_ ` H ) ) C_ G -> ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) |
| 41 | 39 40 | ax-mp | |- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) |
| 42 | 1 | chshii | |- H e. SH |
| 43 | shococss | |- ( H e. SH -> H C_ ( _|_ ` ( _|_ ` H ) ) ) |
|
| 44 | 42 43 | ax-mp | |- H C_ ( _|_ ` ( _|_ ` H ) ) |
| 45 | inss2 | |- ( G i^i ( _|_ ` H ) ) C_ ( _|_ ` H ) |
|
| 46 | 28 14 | chsscon3i | |- ( ( G i^i ( _|_ ` H ) ) C_ ( _|_ ` H ) <-> ( _|_ ` ( _|_ ` H ) ) C_ ( _|_ ` ( G i^i ( _|_ ` H ) ) ) ) |
| 47 | 45 46 | mpbi | |- ( _|_ ` ( _|_ ` H ) ) C_ ( _|_ ` ( G i^i ( _|_ ` H ) ) ) |
| 48 | 44 47 | sstri | |- H C_ ( _|_ ` ( G i^i ( _|_ ` H ) ) ) |
| 49 | 48 5 | sselii | |- ( ( projh ` H ) ` A ) e. ( _|_ ` ( G i^i ( _|_ ` H ) ) ) |
| 50 | 28 30 | pjoc2i | |- ( ( ( projh ` H ) ` A ) e. ( _|_ ` ( G i^i ( _|_ ` H ) ) ) <-> ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) = 0h ) |
| 51 | 49 50 | mpbi | |- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) = 0h |
| 52 | 51 | oveq2i | |- ( -u 1 .h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) = ( -u 1 .h 0h ) |
| 53 | neg1cn | |- -u 1 e. CC |
|
| 54 | hvmul0 | |- ( -u 1 e. CC -> ( -u 1 .h 0h ) = 0h ) |
|
| 55 | 53 54 | ax-mp | |- ( -u 1 .h 0h ) = 0h |
| 56 | 52 55 | eqtri | |- ( -u 1 .h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) = 0h |
| 57 | 41 56 | oveq12i | |- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) +h ( -u 1 .h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) ) = ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) +h 0h ) |
| 58 | 28 2 | pjhclii | |- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) e. ~H |
| 59 | ax-hvaddid | |- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) e. ~H -> ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) +h 0h ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) |
|
| 60 | 58 59 | ax-mp | |- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) +h 0h ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) |
| 61 | 57 60 | eqtri | |- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) +h ( -u 1 .h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) |
| 62 | 38 61 | eqtri | |- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( projh ` H ) ` A ) ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) |
| 63 | 35 62 | eqtri | |- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) |
| 64 | 34 63 | eqtr3di | |- ( H C_ G -> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) |