This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 4.5(iv)->(v) of Beran p. 112. (Contributed by NM, 13-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | |- H e. CH |
|
| pjidm.2 | |- A e. ~H |
||
| pjsslem.1 | |- G e. CH |
||
| Assertion | pjssge0ii | |- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) -> 0 <_ ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | |- H e. CH |
|
| 2 | pjidm.2 | |- A e. ~H |
|
| 3 | pjsslem.1 | |- G e. CH |
|
| 4 | 1 | choccli | |- ( _|_ ` H ) e. CH |
| 5 | 3 4 | chincli | |- ( G i^i ( _|_ ` H ) ) e. CH |
| 6 | 5 2 | pjhclii | |- ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) e. ~H |
| 7 | 6 | normcli | |- ( normh ` ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) e. RR |
| 8 | 7 | sqge0i | |- 0 <_ ( ( normh ` ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) ^ 2 ) |
| 9 | oveq1 | |- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) -> ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) .ih A ) ) |
|
| 10 | 5 2 | pjinormii | |- ( ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) ^ 2 ) |
| 11 | 9 10 | eqtrdi | |- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) -> ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) = ( ( normh ` ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) ) ^ 2 ) ) |
| 12 | 8 11 | breqtrrid | |- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( G i^i ( _|_ ` H ) ) ) ` A ) -> 0 <_ ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) ) |