This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of Beran p. 111. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoc2.1 | |- H e. CH |
|
| pjoc2.2 | |- A e. ~H |
||
| Assertion | pjoc2i | |- ( A e. ( _|_ ` H ) <-> ( ( projh ` H ) ` A ) = 0h ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoc2.1 | |- H e. CH |
|
| 2 | pjoc2.2 | |- A e. ~H |
|
| 3 | 1 | choccli | |- ( _|_ ` H ) e. CH |
| 4 | 3 2 | pjoc1i | |- ( A e. ( _|_ ` H ) <-> ( ( projh ` ( _|_ ` ( _|_ ` H ) ) ) ` A ) = 0h ) |
| 5 | 1 | pjococi | |- ( _|_ ` ( _|_ ` H ) ) = H |
| 6 | 5 | fveq2i | |- ( projh ` ( _|_ ` ( _|_ ` H ) ) ) = ( projh ` H ) |
| 7 | 6 | fveq1i | |- ( ( projh ` ( _|_ ` ( _|_ ` H ) ) ) ` A ) = ( ( projh ` H ) ` A ) |
| 8 | 7 | eqeq1i | |- ( ( ( projh ` ( _|_ ` ( _|_ ` H ) ) ) ` A ) = 0h <-> ( ( projh ` H ) ` A ) = 0h ) |
| 9 | 4 8 | bitri | |- ( A e. ( _|_ ` H ) <-> ( ( projh ` H ) ` A ) = 0h ) |