This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication with the zero vector. (Contributed by NM, 30-May-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvmul0 | |- ( A e. CC -> ( A .h 0h ) = 0h ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul01 | |- ( A e. CC -> ( A x. 0 ) = 0 ) |
|
| 2 | 1 | oveq1d | |- ( A e. CC -> ( ( A x. 0 ) .h 0h ) = ( 0 .h 0h ) ) |
| 3 | ax-hv0cl | |- 0h e. ~H |
|
| 4 | ax-hvmul0 | |- ( 0h e. ~H -> ( 0 .h 0h ) = 0h ) |
|
| 5 | 3 4 | ax-mp | |- ( 0 .h 0h ) = 0h |
| 6 | 2 5 | eqtrdi | |- ( A e. CC -> ( ( A x. 0 ) .h 0h ) = 0h ) |
| 7 | 0cn | |- 0 e. CC |
|
| 8 | ax-hvmulass | |- ( ( A e. CC /\ 0 e. CC /\ 0h e. ~H ) -> ( ( A x. 0 ) .h 0h ) = ( A .h ( 0 .h 0h ) ) ) |
|
| 9 | 7 3 8 | mp3an23 | |- ( A e. CC -> ( ( A x. 0 ) .h 0h ) = ( A .h ( 0 .h 0h ) ) ) |
| 10 | 6 9 | eqtr3d | |- ( A e. CC -> 0h = ( A .h ( 0 .h 0h ) ) ) |
| 11 | 5 | oveq2i | |- ( A .h ( 0 .h 0h ) ) = ( A .h 0h ) |
| 12 | 10 11 | eqtr2di | |- ( A e. CC -> ( A .h 0h ) = 0h ) |