This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | |- A e. CH |
|
| chjcl.2 | |- B e. CH |
||
| Assertion | chsscon3i | |- ( A C_ B <-> ( _|_ ` B ) C_ ( _|_ ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | |- A e. CH |
|
| 2 | chjcl.2 | |- B e. CH |
|
| 3 | 1 | chssii | |- A C_ ~H |
| 4 | 2 | chssii | |- B C_ ~H |
| 5 | occon | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ B -> ( _|_ ` B ) C_ ( _|_ ` A ) ) ) |
|
| 6 | 3 4 5 | mp2an | |- ( A C_ B -> ( _|_ ` B ) C_ ( _|_ ` A ) ) |
| 7 | 2 | choccli | |- ( _|_ ` B ) e. CH |
| 8 | 7 | chssii | |- ( _|_ ` B ) C_ ~H |
| 9 | 1 | choccli | |- ( _|_ ` A ) e. CH |
| 10 | 9 | chssii | |- ( _|_ ` A ) C_ ~H |
| 11 | occon | |- ( ( ( _|_ ` B ) C_ ~H /\ ( _|_ ` A ) C_ ~H ) -> ( ( _|_ ` B ) C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` B ) ) ) ) |
|
| 12 | 8 10 11 | mp2an | |- ( ( _|_ ` B ) C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` B ) ) ) |
| 13 | 1 | pjococi | |- ( _|_ ` ( _|_ ` A ) ) = A |
| 14 | 2 | pjococi | |- ( _|_ ` ( _|_ ` B ) ) = B |
| 15 | 12 13 14 | 3sstr3g | |- ( ( _|_ ` B ) C_ ( _|_ ` A ) -> A C_ B ) |
| 16 | 6 15 | impbii | |- ( A C_ B <-> ( _|_ ` B ) C_ ( _|_ ` A ) ) |