This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for projections. Theorem 4.5(i)->(ii) of Beran p. 112. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | |- H e. CH |
|
| pjidm.2 | |- A e. ~H |
||
| pjsslem.1 | |- G e. CH |
||
| Assertion | pjss2i | |- ( H C_ G -> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | |- H e. CH |
|
| 2 | pjidm.2 | |- A e. ~H |
|
| 3 | pjsslem.1 | |- G e. CH |
|
| 4 | 1 | choccli | |- ( _|_ ` H ) e. CH |
| 5 | 4 2 | pjclii | |- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
| 6 | 1 3 | chsscon3i | |- ( H C_ G <-> ( _|_ ` G ) C_ ( _|_ ` H ) ) |
| 7 | 3 | choccli | |- ( _|_ ` G ) e. CH |
| 8 | 7 2 | pjclii | |- ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) |
| 9 | ssel | |- ( ( _|_ ` G ) C_ ( _|_ ` H ) -> ( ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) ) |
|
| 10 | 8 9 | mpi | |- ( ( _|_ ` G ) C_ ( _|_ ` H ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) |
| 11 | 6 10 | sylbi | |- ( H C_ G -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) |
| 12 | 4 | chshii | |- ( _|_ ` H ) e. SH |
| 13 | shsubcl | |- ( ( ( _|_ ` H ) e. SH /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
|
| 14 | 12 13 | mp3an1 | |- ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
| 15 | 5 11 14 | sylancr | |- ( H C_ G -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
| 16 | 1 2 3 | pjsslem | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) |
| 17 | 16 | eleq1i | |- ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) <-> ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) ) |
| 18 | 3 2 | pjhclii | |- ( ( projh ` G ) ` A ) e. ~H |
| 19 | 1 2 | pjhclii | |- ( ( projh ` H ) ` A ) e. ~H |
| 20 | 18 19 | hvsubcli | |- ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ~H |
| 21 | 1 20 | pjoc2i | |- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ( _|_ ` H ) <-> ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = 0h ) |
| 22 | 17 21 | bitri | |- ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) <-> ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = 0h ) |
| 23 | 1 18 19 | pjsubii | |- ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) |
| 24 | 23 | eqeq1i | |- ( ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = 0h <-> ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) = 0h ) |
| 25 | 1 18 | pjhclii | |- ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) e. ~H |
| 26 | 1 19 | pjhclii | |- ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) e. ~H |
| 27 | 25 26 | hvsubeq0i | |- ( ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) -h ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) = 0h <-> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) |
| 28 | 24 27 | bitri | |- ( ( ( projh ` H ) ` ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = 0h <-> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) ) |
| 29 | 1 2 | pjidmi | |- ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) = ( ( projh ` H ) ` A ) |
| 30 | 29 | eqeq2i | |- ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` ( ( projh ` H ) ` A ) ) <-> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` A ) ) |
| 31 | 22 28 30 | 3bitrri | |- ( ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` A ) <-> ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` H ) ) |
| 32 | 15 31 | sylibr | |- ( H C_ G -> ( ( projh ` H ) ` ( ( projh ` G ) ` A ) ) = ( ( projh ` H ) ` A ) ) |