This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of a vector in the projection subspace. Lemma 4.4(ii) of Beran p. 111. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjop.1 | |- H e. CH |
|
| pjop.2 | |- A e. ~H |
||
| Assertion | pjchi | |- ( A e. H <-> ( ( projh ` H ) ` A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjop.1 | |- H e. CH |
|
| 2 | pjop.2 | |- A e. ~H |
|
| 3 | 1 2 | pjhclii | |- ( ( projh ` H ) ` A ) e. ~H |
| 4 | ax-hvaddid | |- ( ( ( projh ` H ) ` A ) e. ~H -> ( ( ( projh ` H ) ` A ) +h 0h ) = ( ( projh ` H ) ` A ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( ( projh ` H ) ` A ) +h 0h ) = ( ( projh ` H ) ` A ) |
| 6 | 1 2 | pjpji | |- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
| 7 | 1 2 | pjoc1i | |- ( A e. H <-> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |
| 8 | 7 | biimpi | |- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |
| 9 | 8 | oveq2d | |- ( A e. H -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h 0h ) ) |
| 10 | 6 9 | eqtr2id | |- ( A e. H -> ( ( ( projh ` H ) ` A ) +h 0h ) = A ) |
| 11 | 5 10 | eqtr3id | |- ( A e. H -> ( ( projh ` H ) ` A ) = A ) |
| 12 | 1 2 | pjclii | |- ( ( projh ` H ) ` A ) e. H |
| 13 | eleq1 | |- ( ( ( projh ` H ) ` A ) = A -> ( ( ( projh ` H ) ` A ) e. H <-> A e. H ) ) |
|
| 14 | 12 13 | mpbii | |- ( ( ( projh ` H ) ` A ) = A -> A e. H ) |
| 15 | 11 14 | impbii | |- ( A e. H <-> ( ( projh ` H ) ` A ) = A ) |