This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for subset relationships of projections. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | |- H e. CH |
|
| pjidm.2 | |- A e. ~H |
||
| pjsslem.1 | |- G e. CH |
||
| Assertion | pjsslem | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | |- H e. CH |
|
| 2 | pjidm.2 | |- A e. ~H |
|
| 3 | pjsslem.1 | |- G e. CH |
|
| 4 | pjo | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
|
| 5 | 1 2 4 | mp2an | |- ( ( projh ` ( _|_ ` H ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) |
| 6 | pjo | |- ( ( G e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
|
| 7 | 3 2 6 | mp2an | |- ( ( projh ` ( _|_ ` G ) ) ` A ) = ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` G ) ` A ) ) |
| 8 | 5 7 | oveq12i | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) -h ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
| 9 | helch | |- ~H e. CH |
|
| 10 | 9 2 | pjclii | |- ( ( projh ` ~H ) ` A ) e. ~H |
| 11 | 1 2 | pjhclii | |- ( ( projh ` H ) ` A ) e. ~H |
| 12 | 3 2 | pjhclii | |- ( ( projh ` G ) ` A ) e. ~H |
| 13 | 10 11 10 12 | hvsubsub4i | |- ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` H ) ` A ) ) -h ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) = ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
| 14 | hvsubid | |- ( ( ( projh ` ~H ) ` A ) e. ~H -> ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) = 0h ) |
|
| 15 | 10 14 | ax-mp | |- ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) = 0h |
| 16 | 15 | oveq1i | |- ( ( ( ( projh ` ~H ) ` A ) -h ( ( projh ` ~H ) ` A ) ) -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) = ( 0h -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
| 17 | 8 13 16 | 3eqtri | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( 0h -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
| 18 | 11 12 | hvsubcli | |- ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) e. ~H |
| 19 | 18 | hv2negi | |- ( 0h -h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) = ( -u 1 .h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) |
| 20 | 11 12 | hvnegdii | |- ( -u 1 .h ( ( ( projh ` H ) ` A ) -h ( ( projh ` G ) ` A ) ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) |
| 21 | 17 19 20 | 3eqtri | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) = ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) |