This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection meet property. Remark in Kalmbach p. 66. Also Theorem 4.5(i)->(iv) of Beran p. 112. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjidm.2 | ⊢ 𝐴 ∈ ℋ | ||
| pjsslem.1 | ⊢ 𝐺 ∈ Cℋ | ||
| Assertion | pjssmii | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjidm.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | pjsslem.1 | ⊢ 𝐺 ∈ Cℋ | |
| 4 | 3 2 | pjclii | ⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝐺 |
| 5 | 1 2 | pjclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 |
| 6 | ssel | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐺 ) ) | |
| 7 | 5 6 | mpi | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐺 ) |
| 8 | 3 | chshii | ⊢ 𝐺 ∈ Sℋ |
| 9 | shsubcl | ⊢ ( ( 𝐺 ∈ Sℋ ∧ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝐺 ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐺 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ) | |
| 10 | 8 9 | mp3an1 | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝐺 ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐺 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ) |
| 11 | 4 7 10 | sylancr | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ) |
| 12 | 1 2 3 | pjsslem | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 13 | 1 3 | chsscon3i | ⊢ ( 𝐻 ⊆ 𝐺 ↔ ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) ) |
| 14 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 15 | 14 2 | pjclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) |
| 16 | 3 | choccli | ⊢ ( ⊥ ‘ 𝐺 ) ∈ Cℋ |
| 17 | 16 2 | pjclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐺 ) |
| 18 | ssel | ⊢ ( ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐺 ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) ) | |
| 19 | 17 18 | mpi | ⊢ ( ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 20 | 14 | chshii | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Sℋ |
| 21 | shsubcl | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) | |
| 22 | 20 21 | mp3an1 | ⊢ ( ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 23 | 15 19 22 | sylancr | ⊢ ( ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 24 | 13 23 | sylbi | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 25 | 12 24 | eqeltrrid | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 26 | 11 25 | jca | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ∧ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) ) |
| 27 | elin | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ↔ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ∧ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) ) | |
| 28 | 3 14 | chincli | ⊢ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ∈ Cℋ |
| 29 | 3 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℋ |
| 30 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 31 | 29 30 | hvsubcli | ⊢ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℋ |
| 32 | 28 31 | pjchi | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ↔ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 33 | 27 32 | bitr3i | ⊢ ( ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ∧ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) ↔ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 34 | 26 33 | sylib | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 35 | 28 29 30 | pjsubii | ⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) −ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 36 | 28 29 | pjhclii | ⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ∈ ℋ |
| 37 | 28 30 | pjhclii | ⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℋ |
| 38 | 36 37 | hvsubvali | ⊢ ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) −ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( - 1 ·ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
| 39 | inss1 | ⊢ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ⊆ 𝐺 | |
| 40 | 28 2 3 | pjss2i | ⊢ ( ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ⊆ 𝐺 → ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |
| 41 | 39 40 | ax-mp | ⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) |
| 42 | 1 | chshii | ⊢ 𝐻 ∈ Sℋ |
| 43 | shococss | ⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) | |
| 44 | 42 43 | ax-mp | ⊢ 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) |
| 45 | inss2 | ⊢ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ⊥ ‘ 𝐻 ) | |
| 46 | 28 14 | chsscon3i | ⊢ ( ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ⊥ ‘ 𝐻 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
| 47 | 45 46 | mpbi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) |
| 48 | 44 47 | sstri | ⊢ 𝐻 ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) |
| 49 | 48 5 | sselii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) |
| 50 | 28 30 | pjoc2i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ↔ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0ℎ ) |
| 51 | 49 50 | mpbi | ⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0ℎ |
| 52 | 51 | oveq2i | ⊢ ( - 1 ·ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( - 1 ·ℎ 0ℎ ) |
| 53 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 54 | hvmul0 | ⊢ ( - 1 ∈ ℂ → ( - 1 ·ℎ 0ℎ ) = 0ℎ ) | |
| 55 | 53 54 | ax-mp | ⊢ ( - 1 ·ℎ 0ℎ ) = 0ℎ |
| 56 | 52 55 | eqtri | ⊢ ( - 1 ·ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = 0ℎ |
| 57 | 41 56 | oveq12i | ⊢ ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( - 1 ·ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) = ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) +ℎ 0ℎ ) |
| 58 | 28 2 | pjhclii | ⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ∈ ℋ |
| 59 | ax-hvaddid | ⊢ ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ∈ ℋ → ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) +ℎ 0ℎ ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) | |
| 60 | 58 59 | ax-mp | ⊢ ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) +ℎ 0ℎ ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) |
| 61 | 57 60 | eqtri | ⊢ ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( - 1 ·ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) |
| 62 | 38 61 | eqtri | ⊢ ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) −ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) |
| 63 | 35 62 | eqtri | ⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) |
| 64 | 34 63 | eqtr3di | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |