This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcl.s | |- S = ( LSubSp ` W ) |
|
| lsmcl.p | |- .(+) = ( LSSum ` W ) |
||
| Assertion | lsmcl | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T .(+) U ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcl.s | |- S = ( LSubSp ` W ) |
|
| 2 | lsmcl.p | |- .(+) = ( LSSum ` W ) |
|
| 3 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> W e. Abel ) |
| 5 | 1 | lsssubg | |- ( ( W e. LMod /\ T e. S ) -> T e. ( SubGrp ` W ) ) |
| 6 | 5 | 3adant3 | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> T e. ( SubGrp ` W ) ) |
| 7 | 1 | lsssubg | |- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 8 | 7 | 3adant2 | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 9 | 2 | lsmsubg2 | |- ( ( W e. Abel /\ T e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) -> ( T .(+) U ) e. ( SubGrp ` W ) ) |
| 10 | 4 6 8 9 | syl3anc | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T .(+) U ) e. ( SubGrp ` W ) ) |
| 11 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 12 | 11 2 | lsmelval | |- ( ( T e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) -> ( u e. ( T .(+) U ) <-> E. d e. T E. e e. U u = ( d ( +g ` W ) e ) ) ) |
| 13 | 6 8 12 | syl2anc | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( u e. ( T .(+) U ) <-> E. d e. T E. e e. U u = ( d ( +g ` W ) e ) ) ) |
| 14 | 13 | adantr | |- ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) -> ( u e. ( T .(+) U ) <-> E. d e. T E. e e. U u = ( d ( +g ` W ) e ) ) ) |
| 15 | simpll1 | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> W e. LMod ) |
|
| 16 | simplr | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> a e. ( Base ` ( Scalar ` W ) ) ) |
|
| 17 | simpll2 | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> T e. S ) |
|
| 18 | simprl | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> d e. T ) |
|
| 19 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 20 | 19 1 | lssel | |- ( ( T e. S /\ d e. T ) -> d e. ( Base ` W ) ) |
| 21 | 17 18 20 | syl2anc | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> d e. ( Base ` W ) ) |
| 22 | simpll3 | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> U e. S ) |
|
| 23 | simprr | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> e e. U ) |
|
| 24 | 19 1 | lssel | |- ( ( U e. S /\ e e. U ) -> e e. ( Base ` W ) ) |
| 25 | 22 23 24 | syl2anc | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> e e. ( Base ` W ) ) |
| 26 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 27 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 28 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 29 | 19 11 26 27 28 | lmodvsdi | |- ( ( W e. LMod /\ ( a e. ( Base ` ( Scalar ` W ) ) /\ d e. ( Base ` W ) /\ e e. ( Base ` W ) ) ) -> ( a ( .s ` W ) ( d ( +g ` W ) e ) ) = ( ( a ( .s ` W ) d ) ( +g ` W ) ( a ( .s ` W ) e ) ) ) |
| 30 | 15 16 21 25 29 | syl13anc | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> ( a ( .s ` W ) ( d ( +g ` W ) e ) ) = ( ( a ( .s ` W ) d ) ( +g ` W ) ( a ( .s ` W ) e ) ) ) |
| 31 | 15 17 5 | syl2anc | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> T e. ( SubGrp ` W ) ) |
| 32 | 15 22 7 | syl2anc | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> U e. ( SubGrp ` W ) ) |
| 33 | 26 27 28 1 | lssvscl | |- ( ( ( W e. LMod /\ T e. S ) /\ ( a e. ( Base ` ( Scalar ` W ) ) /\ d e. T ) ) -> ( a ( .s ` W ) d ) e. T ) |
| 34 | 15 17 16 18 33 | syl22anc | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> ( a ( .s ` W ) d ) e. T ) |
| 35 | 26 27 28 1 | lssvscl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( a e. ( Base ` ( Scalar ` W ) ) /\ e e. U ) ) -> ( a ( .s ` W ) e ) e. U ) |
| 36 | 15 22 16 23 35 | syl22anc | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> ( a ( .s ` W ) e ) e. U ) |
| 37 | 11 2 | lsmelvali | |- ( ( ( T e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) /\ ( ( a ( .s ` W ) d ) e. T /\ ( a ( .s ` W ) e ) e. U ) ) -> ( ( a ( .s ` W ) d ) ( +g ` W ) ( a ( .s ` W ) e ) ) e. ( T .(+) U ) ) |
| 38 | 31 32 34 36 37 | syl22anc | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> ( ( a ( .s ` W ) d ) ( +g ` W ) ( a ( .s ` W ) e ) ) e. ( T .(+) U ) ) |
| 39 | 30 38 | eqeltrd | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> ( a ( .s ` W ) ( d ( +g ` W ) e ) ) e. ( T .(+) U ) ) |
| 40 | oveq2 | |- ( u = ( d ( +g ` W ) e ) -> ( a ( .s ` W ) u ) = ( a ( .s ` W ) ( d ( +g ` W ) e ) ) ) |
|
| 41 | 40 | eleq1d | |- ( u = ( d ( +g ` W ) e ) -> ( ( a ( .s ` W ) u ) e. ( T .(+) U ) <-> ( a ( .s ` W ) ( d ( +g ` W ) e ) ) e. ( T .(+) U ) ) ) |
| 42 | 39 41 | syl5ibrcom | |- ( ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) /\ ( d e. T /\ e e. U ) ) -> ( u = ( d ( +g ` W ) e ) -> ( a ( .s ` W ) u ) e. ( T .(+) U ) ) ) |
| 43 | 42 | rexlimdvva | |- ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) -> ( E. d e. T E. e e. U u = ( d ( +g ` W ) e ) -> ( a ( .s ` W ) u ) e. ( T .(+) U ) ) ) |
| 44 | 14 43 | sylbid | |- ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ a e. ( Base ` ( Scalar ` W ) ) ) -> ( u e. ( T .(+) U ) -> ( a ( .s ` W ) u ) e. ( T .(+) U ) ) ) |
| 45 | 44 | impr | |- ( ( ( W e. LMod /\ T e. S /\ U e. S ) /\ ( a e. ( Base ` ( Scalar ` W ) ) /\ u e. ( T .(+) U ) ) ) -> ( a ( .s ` W ) u ) e. ( T .(+) U ) ) |
| 46 | 45 | ralrimivva | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> A. a e. ( Base ` ( Scalar ` W ) ) A. u e. ( T .(+) U ) ( a ( .s ` W ) u ) e. ( T .(+) U ) ) |
| 47 | 26 28 19 27 1 | islss4 | |- ( W e. LMod -> ( ( T .(+) U ) e. S <-> ( ( T .(+) U ) e. ( SubGrp ` W ) /\ A. a e. ( Base ` ( Scalar ` W ) ) A. u e. ( T .(+) U ) ( a ( .s ` W ) u ) e. ( T .(+) U ) ) ) ) |
| 48 | 47 | 3ad2ant1 | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( ( T .(+) U ) e. S <-> ( ( T .(+) U ) e. ( SubGrp ` W ) /\ A. a e. ( Base ` ( Scalar ` W ) ) A. u e. ( T .(+) U ) ( a ( .s ` W ) u ) e. ( T .(+) U ) ) ) ) |
| 49 | 10 46 48 | mpbir2and | |- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T .(+) U ) e. S ) |