This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pj1lmhm.l | |- L = ( LSubSp ` W ) |
|
| pj1lmhm.s | |- .(+) = ( LSSum ` W ) |
||
| pj1lmhm.z | |- .0. = ( 0g ` W ) |
||
| pj1lmhm.p | |- P = ( proj1 ` W ) |
||
| pj1lmhm.1 | |- ( ph -> W e. LMod ) |
||
| pj1lmhm.2 | |- ( ph -> T e. L ) |
||
| pj1lmhm.3 | |- ( ph -> U e. L ) |
||
| pj1lmhm.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| Assertion | pj1lmhm2 | |- ( ph -> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom ( W |`s T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pj1lmhm.l | |- L = ( LSubSp ` W ) |
|
| 2 | pj1lmhm.s | |- .(+) = ( LSSum ` W ) |
|
| 3 | pj1lmhm.z | |- .0. = ( 0g ` W ) |
|
| 4 | pj1lmhm.p | |- P = ( proj1 ` W ) |
|
| 5 | pj1lmhm.1 | |- ( ph -> W e. LMod ) |
|
| 6 | pj1lmhm.2 | |- ( ph -> T e. L ) |
|
| 7 | pj1lmhm.3 | |- ( ph -> U e. L ) |
|
| 8 | pj1lmhm.4 | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 9 | 1 2 3 4 5 6 7 8 | pj1lmhm | |- ( ph -> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) ) |
| 10 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 11 | eqid | |- ( Cntz ` W ) = ( Cntz ` W ) |
|
| 12 | 1 | lsssssubg | |- ( W e. LMod -> L C_ ( SubGrp ` W ) ) |
| 13 | 5 12 | syl | |- ( ph -> L C_ ( SubGrp ` W ) ) |
| 14 | 13 6 | sseldd | |- ( ph -> T e. ( SubGrp ` W ) ) |
| 15 | 13 7 | sseldd | |- ( ph -> U e. ( SubGrp ` W ) ) |
| 16 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
| 17 | 5 16 | syl | |- ( ph -> W e. Abel ) |
| 18 | 11 17 14 15 | ablcntzd | |- ( ph -> T C_ ( ( Cntz ` W ) ` U ) ) |
| 19 | 10 2 3 11 14 15 8 18 4 | pj1f | |- ( ph -> ( T P U ) : ( T .(+) U ) --> T ) |
| 20 | 19 | frnd | |- ( ph -> ran ( T P U ) C_ T ) |
| 21 | eqid | |- ( W |`s T ) = ( W |`s T ) |
|
| 22 | 21 1 | reslmhm2b | |- ( ( W e. LMod /\ T e. L /\ ran ( T P U ) C_ T ) -> ( ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) <-> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom ( W |`s T ) ) ) ) |
| 23 | 5 6 20 22 | syl3anc | |- ( ph -> ( ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) <-> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom ( W |`s T ) ) ) ) |
| 24 | 9 23 | mpbid | |- ( ph -> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom ( W |`s T ) ) ) |