This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablcntzd.z | |- Z = ( Cntz ` G ) |
|
| ablcntzd.a | |- ( ph -> G e. Abel ) |
||
| ablcntzd.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| ablcntzd.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| Assertion | ablcntzd | |- ( ph -> T C_ ( Z ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcntzd.z | |- Z = ( Cntz ` G ) |
|
| 2 | ablcntzd.a | |- ( ph -> G e. Abel ) |
|
| 3 | ablcntzd.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | ablcntzd.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | 5 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 7 | 3 6 | syl | |- ( ph -> T C_ ( Base ` G ) ) |
| 8 | ablcmn | |- ( G e. Abel -> G e. CMnd ) |
|
| 9 | 2 8 | syl | |- ( ph -> G e. CMnd ) |
| 10 | 5 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 11 | 4 10 | syl | |- ( ph -> U C_ ( Base ` G ) ) |
| 12 | 5 1 | cntzcmn | |- ( ( G e. CMnd /\ U C_ ( Base ` G ) ) -> ( Z ` U ) = ( Base ` G ) ) |
| 13 | 9 11 12 | syl2anc | |- ( ph -> ( Z ` U ) = ( Base ` G ) ) |
| 14 | 7 13 | sseqtrrd | |- ( ph -> T C_ ( Z ` U ) ) |