This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sin4lt0 | |- ( sin ` 4 ) < 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 2 | 1 | fveq2i | |- ( sin ` ( 2 x. 2 ) ) = ( sin ` 4 ) |
| 3 | 2cn | |- 2 e. CC |
|
| 4 | sin2t | |- ( 2 e. CC -> ( sin ` ( 2 x. 2 ) ) = ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( sin ` ( 2 x. 2 ) ) = ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) |
| 6 | 2 5 | eqtr3i | |- ( sin ` 4 ) = ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) |
| 7 | sincos2sgn | |- ( 0 < ( sin ` 2 ) /\ ( cos ` 2 ) < 0 ) |
|
| 8 | 7 | simpri | |- ( cos ` 2 ) < 0 |
| 9 | 2re | |- 2 e. RR |
|
| 10 | recoscl | |- ( 2 e. RR -> ( cos ` 2 ) e. RR ) |
|
| 11 | 9 10 | ax-mp | |- ( cos ` 2 ) e. RR |
| 12 | 0re | |- 0 e. RR |
|
| 13 | resincl | |- ( 2 e. RR -> ( sin ` 2 ) e. RR ) |
|
| 14 | 9 13 | ax-mp | |- ( sin ` 2 ) e. RR |
| 15 | 7 | simpli | |- 0 < ( sin ` 2 ) |
| 16 | 14 15 | pm3.2i | |- ( ( sin ` 2 ) e. RR /\ 0 < ( sin ` 2 ) ) |
| 17 | ltmul2 | |- ( ( ( cos ` 2 ) e. RR /\ 0 e. RR /\ ( ( sin ` 2 ) e. RR /\ 0 < ( sin ` 2 ) ) ) -> ( ( cos ` 2 ) < 0 <-> ( ( sin ` 2 ) x. ( cos ` 2 ) ) < ( ( sin ` 2 ) x. 0 ) ) ) |
|
| 18 | 11 12 16 17 | mp3an | |- ( ( cos ` 2 ) < 0 <-> ( ( sin ` 2 ) x. ( cos ` 2 ) ) < ( ( sin ` 2 ) x. 0 ) ) |
| 19 | 8 18 | mpbi | |- ( ( sin ` 2 ) x. ( cos ` 2 ) ) < ( ( sin ` 2 ) x. 0 ) |
| 20 | 14 | recni | |- ( sin ` 2 ) e. CC |
| 21 | 20 | mul01i | |- ( ( sin ` 2 ) x. 0 ) = 0 |
| 22 | 19 21 | breqtri | |- ( ( sin ` 2 ) x. ( cos ` 2 ) ) < 0 |
| 23 | 14 11 | remulcli | |- ( ( sin ` 2 ) x. ( cos ` 2 ) ) e. RR |
| 24 | 2pos | |- 0 < 2 |
|
| 25 | 9 24 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 26 | ltmul2 | |- ( ( ( ( sin ` 2 ) x. ( cos ` 2 ) ) e. RR /\ 0 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( sin ` 2 ) x. ( cos ` 2 ) ) < 0 <-> ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) < ( 2 x. 0 ) ) ) |
|
| 27 | 23 12 25 26 | mp3an | |- ( ( ( sin ` 2 ) x. ( cos ` 2 ) ) < 0 <-> ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) < ( 2 x. 0 ) ) |
| 28 | 22 27 | mpbi | |- ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) < ( 2 x. 0 ) |
| 29 | 3 | mul01i | |- ( 2 x. 0 ) = 0 |
| 30 | 28 29 | breqtri | |- ( 2 x. ( ( sin ` 2 ) x. ( cos ` 2 ) ) ) < 0 |
| 31 | 6 30 | eqbrtri | |- ( sin ` 4 ) < 0 |