This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 9-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pilem1 | |- ( A e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( A e. RR+ /\ ( sin ` A ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( A e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( A e. RR+ /\ A e. ( `' sin " { 0 } ) ) ) |
|
| 2 | sinf | |- sin : CC --> CC |
|
| 3 | ffn | |- ( sin : CC --> CC -> sin Fn CC ) |
|
| 4 | fniniseg | |- ( sin Fn CC -> ( A e. ( `' sin " { 0 } ) <-> ( A e. CC /\ ( sin ` A ) = 0 ) ) ) |
|
| 5 | 2 3 4 | mp2b | |- ( A e. ( `' sin " { 0 } ) <-> ( A e. CC /\ ( sin ` A ) = 0 ) ) |
| 6 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 7 | 6 | biantrurd | |- ( A e. RR+ -> ( ( sin ` A ) = 0 <-> ( A e. CC /\ ( sin ` A ) = 0 ) ) ) |
| 8 | 5 7 | bitr4id | |- ( A e. RR+ -> ( A e. ( `' sin " { 0 } ) <-> ( sin ` A ) = 0 ) ) |
| 9 | 8 | pm5.32i | |- ( ( A e. RR+ /\ A e. ( `' sin " { 0 } ) ) <-> ( A e. RR+ /\ ( sin ` A ) = 0 ) ) |
| 10 | 1 9 | bitri | |- ( A e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( A e. RR+ /\ ( sin ` A ) = 0 ) ) |