This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intermediate value theorem, decreasing case. (Contributed by Paul Chapman, 22-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivth.1 | |- ( ph -> A e. RR ) |
|
| ivth.2 | |- ( ph -> B e. RR ) |
||
| ivth.3 | |- ( ph -> U e. RR ) |
||
| ivth.4 | |- ( ph -> A < B ) |
||
| ivth.5 | |- ( ph -> ( A [,] B ) C_ D ) |
||
| ivth.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
||
| ivth.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
||
| ivth2.9 | |- ( ph -> ( ( F ` B ) < U /\ U < ( F ` A ) ) ) |
||
| Assertion | ivth2 | |- ( ph -> E. c e. ( A (,) B ) ( F ` c ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | |- ( ph -> A e. RR ) |
|
| 2 | ivth.2 | |- ( ph -> B e. RR ) |
|
| 3 | ivth.3 | |- ( ph -> U e. RR ) |
|
| 4 | ivth.4 | |- ( ph -> A < B ) |
|
| 5 | ivth.5 | |- ( ph -> ( A [,] B ) C_ D ) |
|
| 6 | ivth.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
|
| 7 | ivth.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
|
| 8 | ivth2.9 | |- ( ph -> ( ( F ` B ) < U /\ U < ( F ` A ) ) ) |
|
| 9 | 3 | renegcld | |- ( ph -> -u U e. RR ) |
| 10 | eqid | |- ( y e. D |-> -u ( F ` y ) ) = ( y e. D |-> -u ( F ` y ) ) |
|
| 11 | 10 | negfcncf | |- ( F e. ( D -cn-> CC ) -> ( y e. D |-> -u ( F ` y ) ) e. ( D -cn-> CC ) ) |
| 12 | 6 11 | syl | |- ( ph -> ( y e. D |-> -u ( F ` y ) ) e. ( D -cn-> CC ) ) |
| 13 | 5 | sselda | |- ( ( ph /\ x e. ( A [,] B ) ) -> x e. D ) |
| 14 | fveq2 | |- ( y = x -> ( F ` y ) = ( F ` x ) ) |
|
| 15 | 14 | negeqd | |- ( y = x -> -u ( F ` y ) = -u ( F ` x ) ) |
| 16 | negex | |- -u ( F ` x ) e. _V |
|
| 17 | 15 10 16 | fvmpt | |- ( x e. D -> ( ( y e. D |-> -u ( F ` y ) ) ` x ) = -u ( F ` x ) ) |
| 18 | 13 17 | syl | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( y e. D |-> -u ( F ` y ) ) ` x ) = -u ( F ` x ) ) |
| 19 | 7 | renegcld | |- ( ( ph /\ x e. ( A [,] B ) ) -> -u ( F ` x ) e. RR ) |
| 20 | 18 19 | eqeltrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( y e. D |-> -u ( F ` y ) ) ` x ) e. RR ) |
| 21 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 22 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 23 | 1 2 4 | ltled | |- ( ph -> A <_ B ) |
| 24 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 25 | 21 22 23 24 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 26 | 5 25 | sseldd | |- ( ph -> A e. D ) |
| 27 | fveq2 | |- ( y = A -> ( F ` y ) = ( F ` A ) ) |
|
| 28 | 27 | negeqd | |- ( y = A -> -u ( F ` y ) = -u ( F ` A ) ) |
| 29 | negex | |- -u ( F ` A ) e. _V |
|
| 30 | 28 10 29 | fvmpt | |- ( A e. D -> ( ( y e. D |-> -u ( F ` y ) ) ` A ) = -u ( F ` A ) ) |
| 31 | 26 30 | syl | |- ( ph -> ( ( y e. D |-> -u ( F ` y ) ) ` A ) = -u ( F ` A ) ) |
| 32 | 8 | simprd | |- ( ph -> U < ( F ` A ) ) |
| 33 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 34 | 33 | eleq1d | |- ( x = A -> ( ( F ` x ) e. RR <-> ( F ` A ) e. RR ) ) |
| 35 | 7 | ralrimiva | |- ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
| 36 | 34 35 25 | rspcdva | |- ( ph -> ( F ` A ) e. RR ) |
| 37 | 3 36 | ltnegd | |- ( ph -> ( U < ( F ` A ) <-> -u ( F ` A ) < -u U ) ) |
| 38 | 32 37 | mpbid | |- ( ph -> -u ( F ` A ) < -u U ) |
| 39 | 31 38 | eqbrtrd | |- ( ph -> ( ( y e. D |-> -u ( F ` y ) ) ` A ) < -u U ) |
| 40 | 8 | simpld | |- ( ph -> ( F ` B ) < U ) |
| 41 | fveq2 | |- ( x = B -> ( F ` x ) = ( F ` B ) ) |
|
| 42 | 41 | eleq1d | |- ( x = B -> ( ( F ` x ) e. RR <-> ( F ` B ) e. RR ) ) |
| 43 | ubicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
|
| 44 | 21 22 23 43 | syl3anc | |- ( ph -> B e. ( A [,] B ) ) |
| 45 | 42 35 44 | rspcdva | |- ( ph -> ( F ` B ) e. RR ) |
| 46 | 45 3 | ltnegd | |- ( ph -> ( ( F ` B ) < U <-> -u U < -u ( F ` B ) ) ) |
| 47 | 40 46 | mpbid | |- ( ph -> -u U < -u ( F ` B ) ) |
| 48 | 5 44 | sseldd | |- ( ph -> B e. D ) |
| 49 | fveq2 | |- ( y = B -> ( F ` y ) = ( F ` B ) ) |
|
| 50 | 49 | negeqd | |- ( y = B -> -u ( F ` y ) = -u ( F ` B ) ) |
| 51 | negex | |- -u ( F ` B ) e. _V |
|
| 52 | 50 10 51 | fvmpt | |- ( B e. D -> ( ( y e. D |-> -u ( F ` y ) ) ` B ) = -u ( F ` B ) ) |
| 53 | 48 52 | syl | |- ( ph -> ( ( y e. D |-> -u ( F ` y ) ) ` B ) = -u ( F ` B ) ) |
| 54 | 47 53 | breqtrrd | |- ( ph -> -u U < ( ( y e. D |-> -u ( F ` y ) ) ` B ) ) |
| 55 | 39 54 | jca | |- ( ph -> ( ( ( y e. D |-> -u ( F ` y ) ) ` A ) < -u U /\ -u U < ( ( y e. D |-> -u ( F ` y ) ) ` B ) ) ) |
| 56 | 1 2 9 4 5 12 20 55 | ivth | |- ( ph -> E. c e. ( A (,) B ) ( ( y e. D |-> -u ( F ` y ) ) ` c ) = -u U ) |
| 57 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 58 | 57 5 | sstrid | |- ( ph -> ( A (,) B ) C_ D ) |
| 59 | 58 | sselda | |- ( ( ph /\ c e. ( A (,) B ) ) -> c e. D ) |
| 60 | fveq2 | |- ( y = c -> ( F ` y ) = ( F ` c ) ) |
|
| 61 | 60 | negeqd | |- ( y = c -> -u ( F ` y ) = -u ( F ` c ) ) |
| 62 | negex | |- -u ( F ` c ) e. _V |
|
| 63 | 61 10 62 | fvmpt | |- ( c e. D -> ( ( y e. D |-> -u ( F ` y ) ) ` c ) = -u ( F ` c ) ) |
| 64 | 59 63 | syl | |- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( y e. D |-> -u ( F ` y ) ) ` c ) = -u ( F ` c ) ) |
| 65 | 64 | eqeq1d | |- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( ( y e. D |-> -u ( F ` y ) ) ` c ) = -u U <-> -u ( F ` c ) = -u U ) ) |
| 66 | cncff | |- ( F e. ( D -cn-> CC ) -> F : D --> CC ) |
|
| 67 | 6 66 | syl | |- ( ph -> F : D --> CC ) |
| 68 | 67 | ffvelcdmda | |- ( ( ph /\ c e. D ) -> ( F ` c ) e. CC ) |
| 69 | 59 68 | syldan | |- ( ( ph /\ c e. ( A (,) B ) ) -> ( F ` c ) e. CC ) |
| 70 | 3 | recnd | |- ( ph -> U e. CC ) |
| 71 | 70 | adantr | |- ( ( ph /\ c e. ( A (,) B ) ) -> U e. CC ) |
| 72 | 69 71 | neg11ad | |- ( ( ph /\ c e. ( A (,) B ) ) -> ( -u ( F ` c ) = -u U <-> ( F ` c ) = U ) ) |
| 73 | 65 72 | bitrd | |- ( ( ph /\ c e. ( A (,) B ) ) -> ( ( ( y e. D |-> -u ( F ` y ) ) ` c ) = -u U <-> ( F ` c ) = U ) ) |
| 74 | 73 | rexbidva | |- ( ph -> ( E. c e. ( A (,) B ) ( ( y e. D |-> -u ( F ` y ) ) ` c ) = -u U <-> E. c e. ( A (,) B ) ( F ` c ) = U ) ) |
| 75 | 56 74 | mpbid | |- ( ph -> E. c e. ( A (,) B ) ( F ` c ) = U ) |