This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for average. (Contributed by Jeff Hankins, 15-Sep-2013) (Revised by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | avgle2 | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( ( A + B ) / 2 ) <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | avglt1 | |- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> B < ( ( B + A ) / 2 ) ) ) |
|
| 2 | 1 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B < A <-> B < ( ( B + A ) / 2 ) ) ) |
| 3 | recn | |- ( A e. RR -> A e. CC ) |
|
| 4 | recn | |- ( B e. RR -> B e. CC ) |
|
| 5 | addcom | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) ) |
| 7 | 6 | oveq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) / 2 ) = ( ( B + A ) / 2 ) ) |
| 8 | 7 | breq2d | |- ( ( A e. RR /\ B e. RR ) -> ( B < ( ( A + B ) / 2 ) <-> B < ( ( B + A ) / 2 ) ) ) |
| 9 | 2 8 | bitr4d | |- ( ( A e. RR /\ B e. RR ) -> ( B < A <-> B < ( ( A + B ) / 2 ) ) ) |
| 10 | 9 | notbid | |- ( ( A e. RR /\ B e. RR ) -> ( -. B < A <-> -. B < ( ( A + B ) / 2 ) ) ) |
| 11 | lenlt | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
|
| 12 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 13 | rehalfcl | |- ( ( A + B ) e. RR -> ( ( A + B ) / 2 ) e. RR ) |
|
| 14 | 12 13 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) / 2 ) e. RR ) |
| 15 | lenlt | |- ( ( ( ( A + B ) / 2 ) e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) <_ B <-> -. B < ( ( A + B ) / 2 ) ) ) |
|
| 16 | 14 15 | sylancom | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) <_ B <-> -. B < ( ( A + B ) / 2 ) ) ) |
| 17 | 10 11 16 | 3bitr4d | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( ( A + B ) / 2 ) <_ B ) ) |