This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sin2t | |- ( A e. CC -> ( sin ` ( 2 x. A ) ) = ( 2 x. ( ( sin ` A ) x. ( cos ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2times | |- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
|
| 2 | 1 | fveq2d | |- ( A e. CC -> ( sin ` ( 2 x. A ) ) = ( sin ` ( A + A ) ) ) |
| 3 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 4 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 5 | 3 4 | mulcomd | |- ( A e. CC -> ( ( cos ` A ) x. ( sin ` A ) ) = ( ( sin ` A ) x. ( cos ` A ) ) ) |
| 6 | 5 | oveq2d | |- ( A e. CC -> ( ( ( sin ` A ) x. ( cos ` A ) ) + ( ( cos ` A ) x. ( sin ` A ) ) ) = ( ( ( sin ` A ) x. ( cos ` A ) ) + ( ( sin ` A ) x. ( cos ` A ) ) ) ) |
| 7 | sinadd | |- ( ( A e. CC /\ A e. CC ) -> ( sin ` ( A + A ) ) = ( ( ( sin ` A ) x. ( cos ` A ) ) + ( ( cos ` A ) x. ( sin ` A ) ) ) ) |
|
| 8 | 7 | anidms | |- ( A e. CC -> ( sin ` ( A + A ) ) = ( ( ( sin ` A ) x. ( cos ` A ) ) + ( ( cos ` A ) x. ( sin ` A ) ) ) ) |
| 9 | 4 3 | mulcld | |- ( A e. CC -> ( ( sin ` A ) x. ( cos ` A ) ) e. CC ) |
| 10 | 9 | 2timesd | |- ( A e. CC -> ( 2 x. ( ( sin ` A ) x. ( cos ` A ) ) ) = ( ( ( sin ` A ) x. ( cos ` A ) ) + ( ( sin ` A ) x. ( cos ` A ) ) ) ) |
| 11 | 6 8 10 | 3eqtr4d | |- ( A e. CC -> ( sin ` ( A + A ) ) = ( 2 x. ( ( sin ` A ) x. ( cos ` A ) ) ) ) |
| 12 | 2 11 | eqtrd | |- ( A e. CC -> ( sin ` ( 2 x. A ) ) = ( 2 x. ( ( sin ` A ) x. ( cos ` A ) ) ) ) |