This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sin02gt0 | |- ( A e. ( 0 (,] 2 ) -> 0 < ( sin ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | 2re | |- 2 e. RR |
|
| 3 | elioc2 | |- ( ( 0 e. RR* /\ 2 e. RR ) -> ( A e. ( 0 (,] 2 ) <-> ( A e. RR /\ 0 < A /\ A <_ 2 ) ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( A e. ( 0 (,] 2 ) <-> ( A e. RR /\ 0 < A /\ A <_ 2 ) ) |
| 5 | rehalfcl | |- ( A e. RR -> ( A / 2 ) e. RR ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( A e. RR /\ 0 < A /\ A <_ 2 ) -> ( A / 2 ) e. RR ) |
| 7 | 4 6 | sylbi | |- ( A e. ( 0 (,] 2 ) -> ( A / 2 ) e. RR ) |
| 8 | resincl | |- ( ( A / 2 ) e. RR -> ( sin ` ( A / 2 ) ) e. RR ) |
|
| 9 | recoscl | |- ( ( A / 2 ) e. RR -> ( cos ` ( A / 2 ) ) e. RR ) |
|
| 10 | 8 9 | remulcld | |- ( ( A / 2 ) e. RR -> ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) |
| 11 | 7 10 | syl | |- ( A e. ( 0 (,] 2 ) -> ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) |
| 12 | 2pos | |- 0 < 2 |
|
| 13 | divgt0 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 2 e. RR /\ 0 < 2 ) ) -> 0 < ( A / 2 ) ) |
|
| 14 | 2 12 13 | mpanr12 | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( A / 2 ) ) |
| 15 | 14 | 3adant3 | |- ( ( A e. RR /\ 0 < A /\ A <_ 2 ) -> 0 < ( A / 2 ) ) |
| 16 | 2 12 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 17 | lediv1 | |- ( ( A e. RR /\ 2 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( A <_ 2 <-> ( A / 2 ) <_ ( 2 / 2 ) ) ) |
|
| 18 | 2 16 17 | mp3an23 | |- ( A e. RR -> ( A <_ 2 <-> ( A / 2 ) <_ ( 2 / 2 ) ) ) |
| 19 | 18 | biimpa | |- ( ( A e. RR /\ A <_ 2 ) -> ( A / 2 ) <_ ( 2 / 2 ) ) |
| 20 | 2div2e1 | |- ( 2 / 2 ) = 1 |
|
| 21 | 19 20 | breqtrdi | |- ( ( A e. RR /\ A <_ 2 ) -> ( A / 2 ) <_ 1 ) |
| 22 | 21 | 3adant2 | |- ( ( A e. RR /\ 0 < A /\ A <_ 2 ) -> ( A / 2 ) <_ 1 ) |
| 23 | 6 15 22 | 3jca | |- ( ( A e. RR /\ 0 < A /\ A <_ 2 ) -> ( ( A / 2 ) e. RR /\ 0 < ( A / 2 ) /\ ( A / 2 ) <_ 1 ) ) |
| 24 | 1re | |- 1 e. RR |
|
| 25 | elioc2 | |- ( ( 0 e. RR* /\ 1 e. RR ) -> ( ( A / 2 ) e. ( 0 (,] 1 ) <-> ( ( A / 2 ) e. RR /\ 0 < ( A / 2 ) /\ ( A / 2 ) <_ 1 ) ) ) |
|
| 26 | 1 24 25 | mp2an | |- ( ( A / 2 ) e. ( 0 (,] 1 ) <-> ( ( A / 2 ) e. RR /\ 0 < ( A / 2 ) /\ ( A / 2 ) <_ 1 ) ) |
| 27 | 23 4 26 | 3imtr4i | |- ( A e. ( 0 (,] 2 ) -> ( A / 2 ) e. ( 0 (,] 1 ) ) |
| 28 | sin01gt0 | |- ( ( A / 2 ) e. ( 0 (,] 1 ) -> 0 < ( sin ` ( A / 2 ) ) ) |
|
| 29 | 27 28 | syl | |- ( A e. ( 0 (,] 2 ) -> 0 < ( sin ` ( A / 2 ) ) ) |
| 30 | cos01gt0 | |- ( ( A / 2 ) e. ( 0 (,] 1 ) -> 0 < ( cos ` ( A / 2 ) ) ) |
|
| 31 | 27 30 | syl | |- ( A e. ( 0 (,] 2 ) -> 0 < ( cos ` ( A / 2 ) ) ) |
| 32 | axmulgt0 | |- ( ( ( sin ` ( A / 2 ) ) e. RR /\ ( cos ` ( A / 2 ) ) e. RR ) -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
|
| 33 | 8 9 32 | syl2anc | |- ( ( A / 2 ) e. RR -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 34 | 7 33 | syl | |- ( A e. ( 0 (,] 2 ) -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 35 | 29 31 34 | mp2and | |- ( A e. ( 0 (,] 2 ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) |
| 36 | axmulgt0 | |- ( ( 2 e. RR /\ ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) -> ( ( 0 < 2 /\ 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
|
| 37 | 2 36 | mpan | |- ( ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR -> ( ( 0 < 2 /\ 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
| 38 | 12 37 | mpani | |- ( ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR -> ( 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
| 39 | 11 35 38 | sylc | |- ( A e. ( 0 (,] 2 ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 40 | 7 | recnd | |- ( A e. ( 0 (,] 2 ) -> ( A / 2 ) e. CC ) |
| 41 | sin2t | |- ( ( A / 2 ) e. CC -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
|
| 42 | 40 41 | syl | |- ( A e. ( 0 (,] 2 ) -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 43 | 39 42 | breqtrrd | |- ( A e. ( 0 (,] 2 ) -> 0 < ( sin ` ( 2 x. ( A / 2 ) ) ) ) |
| 44 | 4 | simp1bi | |- ( A e. ( 0 (,] 2 ) -> A e. RR ) |
| 45 | 44 | recnd | |- ( A e. ( 0 (,] 2 ) -> A e. CC ) |
| 46 | 2cn | |- 2 e. CC |
|
| 47 | 2ne0 | |- 2 =/= 0 |
|
| 48 | divcan2 | |- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) |
|
| 49 | 46 47 48 | mp3an23 | |- ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) |
| 50 | 45 49 | syl | |- ( A e. ( 0 (,] 2 ) -> ( 2 x. ( A / 2 ) ) = A ) |
| 51 | 50 | fveq2d | |- ( A e. ( 0 (,] 2 ) -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( sin ` A ) ) |
| 52 | 43 51 | breqtrd | |- ( A e. ( 0 (,] 2 ) -> 0 < ( sin ` A ) ) |