This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of the Pigeonhole Principle php : a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | php4 | |- ( A e. _om -> A ~< suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucidg | |- ( A e. _om -> A e. suc A ) |
|
| 2 | nnord | |- ( A e. _om -> Ord A ) |
|
| 3 | ordsuc | |- ( Ord A <-> Ord suc A ) |
|
| 4 | 3 | biimpi | |- ( Ord A -> Ord suc A ) |
| 5 | ordelpss | |- ( ( Ord A /\ Ord suc A ) -> ( A e. suc A <-> A C. suc A ) ) |
|
| 6 | 2 4 5 | syl2anc2 | |- ( A e. _om -> ( A e. suc A <-> A C. suc A ) ) |
| 7 | 1 6 | mpbid | |- ( A e. _om -> A C. suc A ) |
| 8 | peano2b | |- ( A e. _om <-> suc A e. _om ) |
|
| 9 | php2 | |- ( ( suc A e. _om /\ A C. suc A ) -> A ~< suc A ) |
|
| 10 | 8 9 | sylanb | |- ( ( A e. _om /\ A C. suc A ) -> A ~< suc A ) |
| 11 | 7 10 | mpdan | |- ( A e. _om -> A ~< suc A ) |