This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 20-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | php2 | |- ( ( A e. _om /\ B C. A ) -> B ~< A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnfi | |- ( A e. _om -> A e. Fin ) |
|
| 2 | pssss | |- ( B C. A -> B C_ A ) |
|
| 3 | ssdomfi | |- ( A e. Fin -> ( B C_ A -> B ~<_ A ) ) |
|
| 4 | 3 | imp | |- ( ( A e. Fin /\ B C_ A ) -> B ~<_ A ) |
| 5 | 1 2 4 | syl2an | |- ( ( A e. _om /\ B C. A ) -> B ~<_ A ) |
| 6 | php | |- ( ( A e. _om /\ B C. A ) -> -. A ~~ B ) |
|
| 7 | ensymfib | |- ( A e. Fin -> ( A ~~ B <-> B ~~ A ) ) |
|
| 8 | 7 | biimprd | |- ( A e. Fin -> ( B ~~ A -> A ~~ B ) ) |
| 9 | 1 8 | syl | |- ( A e. _om -> ( B ~~ A -> A ~~ B ) ) |
| 10 | 9 | adantr | |- ( ( A e. _om /\ B C. A ) -> ( B ~~ A -> A ~~ B ) ) |
| 11 | 6 10 | mtod | |- ( ( A e. _om /\ B C. A ) -> -. B ~~ A ) |
| 12 | brsdom | |- ( B ~< A <-> ( B ~<_ A /\ -. B ~~ A ) ) |
|
| 13 | 5 11 12 | sylanbrc | |- ( ( A e. _om /\ B C. A ) -> B ~< A ) |