This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb ). (Contributed by BTernaryTau, 9-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ensymfib | |- ( A e. Fin -> ( A ~~ B <-> B ~~ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | |- ( A ~~ B <-> E. f f : A -1-1-onto-> B ) |
|
| 2 | 19.42v | |- ( E. f ( A e. Fin /\ f : A -1-1-onto-> B ) <-> ( A e. Fin /\ E. f f : A -1-1-onto-> B ) ) |
|
| 3 | f1ocnv | |- ( f : A -1-1-onto-> B -> `' f : B -1-1-onto-> A ) |
|
| 4 | f1oenfirn | |- ( ( A e. Fin /\ `' f : B -1-1-onto-> A ) -> B ~~ A ) |
|
| 5 | 3 4 | sylan2 | |- ( ( A e. Fin /\ f : A -1-1-onto-> B ) -> B ~~ A ) |
| 6 | 5 | exlimiv | |- ( E. f ( A e. Fin /\ f : A -1-1-onto-> B ) -> B ~~ A ) |
| 7 | 2 6 | sylbir | |- ( ( A e. Fin /\ E. f f : A -1-1-onto-> B ) -> B ~~ A ) |
| 8 | 1 7 | sylan2b | |- ( ( A e. Fin /\ A ~~ B ) -> B ~~ A ) |
| 9 | bren | |- ( B ~~ A <-> E. g g : B -1-1-onto-> A ) |
|
| 10 | 19.42v | |- ( E. g ( A e. Fin /\ g : B -1-1-onto-> A ) <-> ( A e. Fin /\ E. g g : B -1-1-onto-> A ) ) |
|
| 11 | f1ocnv | |- ( g : B -1-1-onto-> A -> `' g : A -1-1-onto-> B ) |
|
| 12 | f1oenfi | |- ( ( A e. Fin /\ `' g : A -1-1-onto-> B ) -> A ~~ B ) |
|
| 13 | 11 12 | sylan2 | |- ( ( A e. Fin /\ g : B -1-1-onto-> A ) -> A ~~ B ) |
| 14 | 13 | exlimiv | |- ( E. g ( A e. Fin /\ g : B -1-1-onto-> A ) -> A ~~ B ) |
| 15 | 10 14 | sylbir | |- ( ( A e. Fin /\ E. g g : B -1-1-onto-> A ) -> A ~~ B ) |
| 16 | 9 15 | sylan2b | |- ( ( A e. Fin /\ B ~~ A ) -> A ~~ B ) |
| 17 | 8 16 | impbida | |- ( A e. Fin -> ( A ~~ B <-> B ~~ A ) ) |