This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity of strict dominance and dominance when A is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr ). (Contributed by BTernaryTau, 25-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomdomtrfi | |- ( ( A e. Fin /\ A ~< B /\ B ~<_ C ) -> A ~< C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | |- ( A ~< B -> A ~<_ B ) |
|
| 2 | domtrfil | |- ( ( A e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |
|
| 3 | 1 2 | syl3an2 | |- ( ( A e. Fin /\ A ~< B /\ B ~<_ C ) -> A ~<_ C ) |
| 4 | simp1 | |- ( ( A e. Fin /\ B ~<_ C /\ A ~~ C ) -> A e. Fin ) |
|
| 5 | ensymfib | |- ( A e. Fin -> ( A ~~ C <-> C ~~ A ) ) |
|
| 6 | 5 | biimpa | |- ( ( A e. Fin /\ A ~~ C ) -> C ~~ A ) |
| 7 | 6 | 3adant2 | |- ( ( A e. Fin /\ B ~<_ C /\ A ~~ C ) -> C ~~ A ) |
| 8 | endom | |- ( C ~~ A -> C ~<_ A ) |
|
| 9 | domtrfir | |- ( ( A e. Fin /\ B ~<_ C /\ C ~<_ A ) -> B ~<_ A ) |
|
| 10 | 8 9 | syl3an3 | |- ( ( A e. Fin /\ B ~<_ C /\ C ~~ A ) -> B ~<_ A ) |
| 11 | 7 10 | syld3an3 | |- ( ( A e. Fin /\ B ~<_ C /\ A ~~ C ) -> B ~<_ A ) |
| 12 | domfi | |- ( ( A e. Fin /\ B ~<_ A ) -> B e. Fin ) |
|
| 13 | domnsymfi | |- ( ( B e. Fin /\ B ~<_ A ) -> -. A ~< B ) |
|
| 14 | 12 13 | sylancom | |- ( ( A e. Fin /\ B ~<_ A ) -> -. A ~< B ) |
| 15 | 4 11 14 | syl2anc | |- ( ( A e. Fin /\ B ~<_ C /\ A ~~ C ) -> -. A ~< B ) |
| 16 | 15 | 3expia | |- ( ( A e. Fin /\ B ~<_ C ) -> ( A ~~ C -> -. A ~< B ) ) |
| 17 | 16 | con2d | |- ( ( A e. Fin /\ B ~<_ C ) -> ( A ~< B -> -. A ~~ C ) ) |
| 18 | 17 | 3impia | |- ( ( A e. Fin /\ B ~<_ C /\ A ~< B ) -> -. A ~~ C ) |
| 19 | 18 | 3com23 | |- ( ( A e. Fin /\ A ~< B /\ B ~<_ C ) -> -. A ~~ C ) |
| 20 | brsdom | |- ( A ~< C <-> ( A ~<_ C /\ -. A ~~ C ) ) |
|
| 21 | 3 19 20 | sylanbrc | |- ( ( A e. Fin /\ A ~< B /\ B ~<_ C ) -> A ~< C ) |