This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imadmrn | |- ( A " dom A ) = ran A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | vex | |- y e. _V |
|
| 3 | 1 2 | opeldm | |- ( <. x , y >. e. A -> x e. dom A ) |
| 4 | 3 | pm4.71i | |- ( <. x , y >. e. A <-> ( <. x , y >. e. A /\ x e. dom A ) ) |
| 5 | ancom | |- ( ( <. x , y >. e. A /\ x e. dom A ) <-> ( x e. dom A /\ <. x , y >. e. A ) ) |
|
| 6 | 4 5 | bitr2i | |- ( ( x e. dom A /\ <. x , y >. e. A ) <-> <. x , y >. e. A ) |
| 7 | 6 | exbii | |- ( E. x ( x e. dom A /\ <. x , y >. e. A ) <-> E. x <. x , y >. e. A ) |
| 8 | 7 | abbii | |- { y | E. x ( x e. dom A /\ <. x , y >. e. A ) } = { y | E. x <. x , y >. e. A } |
| 9 | dfima3 | |- ( A " dom A ) = { y | E. x ( x e. dom A /\ <. x , y >. e. A ) } |
|
| 10 | dfrn3 | |- ran A = { y | E. x <. x , y >. e. A } |
|
| 11 | 8 9 10 | 3eqtr4i | |- ( A " dom A ) = ran A |