This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity of dominance and strict dominance when A is finite, proved without using the Axiom of Power Sets (unlike domsdomtr ). (Contributed by BTernaryTau, 25-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domsdomtrfi | |- ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> A ~< C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | |- ( B ~< C -> B ~<_ C ) |
|
| 2 | domtrfil | |- ( ( A e. Fin /\ A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |
|
| 3 | 1 2 | syl3an3 | |- ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> A ~<_ C ) |
| 4 | ensymfib | |- ( A e. Fin -> ( A ~~ C <-> C ~~ A ) ) |
|
| 5 | 4 | biimpa | |- ( ( A e. Fin /\ A ~~ C ) -> C ~~ A ) |
| 6 | 5 | 3adant3 | |- ( ( A e. Fin /\ A ~~ C /\ A ~<_ B ) -> C ~~ A ) |
| 7 | enfii | |- ( ( A e. Fin /\ C ~~ A ) -> C e. Fin ) |
|
| 8 | 7 | 3adant3 | |- ( ( A e. Fin /\ C ~~ A /\ A ~<_ B ) -> C e. Fin ) |
| 9 | endom | |- ( C ~~ A -> C ~<_ A ) |
|
| 10 | domtrfi | |- ( ( A e. Fin /\ C ~<_ A /\ A ~<_ B ) -> C ~<_ B ) |
|
| 11 | 9 10 | syl3an2 | |- ( ( A e. Fin /\ C ~~ A /\ A ~<_ B ) -> C ~<_ B ) |
| 12 | 8 11 | jca | |- ( ( A e. Fin /\ C ~~ A /\ A ~<_ B ) -> ( C e. Fin /\ C ~<_ B ) ) |
| 13 | 6 12 | syld3an2 | |- ( ( A e. Fin /\ A ~~ C /\ A ~<_ B ) -> ( C e. Fin /\ C ~<_ B ) ) |
| 14 | domnsymfi | |- ( ( C e. Fin /\ C ~<_ B ) -> -. B ~< C ) |
|
| 15 | 13 14 | syl | |- ( ( A e. Fin /\ A ~~ C /\ A ~<_ B ) -> -. B ~< C ) |
| 16 | 15 | 3com23 | |- ( ( A e. Fin /\ A ~<_ B /\ A ~~ C ) -> -. B ~< C ) |
| 17 | 16 | 3expia | |- ( ( A e. Fin /\ A ~<_ B ) -> ( A ~~ C -> -. B ~< C ) ) |
| 18 | 17 | con2d | |- ( ( A e. Fin /\ A ~<_ B ) -> ( B ~< C -> -. A ~~ C ) ) |
| 19 | 18 | 3impia | |- ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> -. A ~~ C ) |
| 20 | brsdom | |- ( A ~< C <-> ( A ~<_ C /\ -. A ~~ C ) ) |
|
| 21 | 3 19 20 | sylanbrc | |- ( ( A e. Fin /\ A ~<_ B /\ B ~< C ) -> A ~< C ) |