This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of exponents law for integer exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expaddz | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn | |- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
|
| 2 | elznn0nn | |- ( M e. ZZ <-> ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) |
|
| 3 | expadd | |- ( ( A e. CC /\ M e. NN0 /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
|
| 4 | 3 | 3expia | |- ( ( A e. CC /\ M e. NN0 ) -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 5 | 4 | adantlr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 ) -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 6 | expaddzlem | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
|
| 7 | 6 | 3expia | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) ) -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 8 | 5 7 | jaodan | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 9 | expaddzlem | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ ( N + M ) ) = ( ( A ^ N ) x. ( A ^ M ) ) ) |
|
| 10 | simp3 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> M e. NN0 ) |
|
| 11 | 10 | nn0cnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> M e. CC ) |
| 12 | simp2l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> N e. RR ) |
|
| 13 | 12 | recnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> N e. CC ) |
| 14 | 11 13 | addcomd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( M + N ) = ( N + M ) ) |
| 15 | 14 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ ( M + N ) ) = ( A ^ ( N + M ) ) ) |
| 16 | simp1l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> A e. CC ) |
|
| 17 | expcl | |- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ M ) e. CC ) |
|
| 18 | 16 10 17 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ M ) e. CC ) |
| 19 | simp1r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> A =/= 0 ) |
|
| 20 | 13 | negnegd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> -u -u N = N ) |
| 21 | simp2r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> -u N e. NN ) |
|
| 22 | 21 | nnnn0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> -u N e. NN0 ) |
| 23 | nn0negz | |- ( -u N e. NN0 -> -u -u N e. ZZ ) |
|
| 24 | 22 23 | syl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> -u -u N e. ZZ ) |
| 25 | 20 24 | eqeltrrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> N e. ZZ ) |
| 26 | expclz | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. CC ) |
|
| 27 | 16 19 25 26 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ N ) e. CC ) |
| 28 | 18 27 | mulcomd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( ( A ^ M ) x. ( A ^ N ) ) = ( ( A ^ N ) x. ( A ^ M ) ) ) |
| 29 | 9 15 28 | 3eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
| 30 | 29 | 3expia | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( M e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 31 | 30 | impancom | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 ) -> ( ( N e. RR /\ -u N e. NN ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 32 | simp2l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> M e. RR ) |
|
| 33 | 32 | recnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> M e. CC ) |
| 34 | simp3l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. RR ) |
|
| 35 | 34 | recnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
| 36 | 33 35 | negdid | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u ( M + N ) = ( -u M + -u N ) ) |
| 37 | 36 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u ( M + N ) ) = ( A ^ ( -u M + -u N ) ) ) |
| 38 | simp1l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> A e. CC ) |
|
| 39 | simp2r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u M e. NN ) |
|
| 40 | 39 | nnnn0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u M e. NN0 ) |
| 41 | simp3r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN ) |
|
| 42 | 41 | nnnn0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN0 ) |
| 43 | expadd | |- ( ( A e. CC /\ -u M e. NN0 /\ -u N e. NN0 ) -> ( A ^ ( -u M + -u N ) ) = ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) |
|
| 44 | 38 40 42 43 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( -u M + -u N ) ) = ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) |
| 45 | 37 44 | eqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u ( M + N ) ) = ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) |
| 46 | 45 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( 1 / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
| 47 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 48 | 47 | oveq1i | |- ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) = ( 1 / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) |
| 49 | 46 48 | eqtr4di | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
| 50 | expcl | |- ( ( A e. CC /\ -u M e. NN0 ) -> ( A ^ -u M ) e. CC ) |
|
| 51 | 38 40 50 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u M ) e. CC ) |
| 52 | simp1r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> A =/= 0 ) |
|
| 53 | 40 | nn0zd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u M e. ZZ ) |
| 54 | expne0i | |- ( ( A e. CC /\ A =/= 0 /\ -u M e. ZZ ) -> ( A ^ -u M ) =/= 0 ) |
|
| 55 | 38 52 53 54 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u M ) =/= 0 ) |
| 56 | expcl | |- ( ( A e. CC /\ -u N e. NN0 ) -> ( A ^ -u N ) e. CC ) |
|
| 57 | 38 42 56 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) e. CC ) |
| 58 | 42 | nn0zd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) |
| 59 | expne0i | |- ( ( A e. CC /\ A =/= 0 /\ -u N e. ZZ ) -> ( A ^ -u N ) =/= 0 ) |
|
| 60 | 38 52 58 59 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) =/= 0 ) |
| 61 | ax-1cn | |- 1 e. CC |
|
| 62 | divmuldiv | |- ( ( ( 1 e. CC /\ 1 e. CC ) /\ ( ( ( A ^ -u M ) e. CC /\ ( A ^ -u M ) =/= 0 ) /\ ( ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) ) ) -> ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
|
| 63 | 61 61 62 | mpanl12 | |- ( ( ( ( A ^ -u M ) e. CC /\ ( A ^ -u M ) =/= 0 ) /\ ( ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) ) -> ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
| 64 | 51 55 57 60 63 | syl22anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
| 65 | 49 64 | eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) ) |
| 66 | 33 35 | addcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( M + N ) e. CC ) |
| 67 | 40 42 | nn0addcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u M + -u N ) e. NN0 ) |
| 68 | 36 67 | eqeltrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u ( M + N ) e. NN0 ) |
| 69 | expneg2 | |- ( ( A e. CC /\ ( M + N ) e. CC /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) = ( 1 / ( A ^ -u ( M + N ) ) ) ) |
|
| 70 | 38 66 68 69 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M + N ) ) = ( 1 / ( A ^ -u ( M + N ) ) ) ) |
| 71 | expneg2 | |- ( ( A e. CC /\ M e. CC /\ -u M e. NN0 ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
|
| 72 | 38 33 40 71 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
| 73 | expneg2 | |- ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
|
| 74 | 38 35 42 73 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
| 75 | 72 74 | oveq12d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ M ) x. ( A ^ N ) ) = ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) ) |
| 76 | 65 70 75 | 3eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
| 77 | 76 | 3expia | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) ) -> ( ( N e. RR /\ -u N e. NN ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 78 | 31 77 | jaodan | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) -> ( ( N e. RR /\ -u N e. NN ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 79 | 8 78 | jaod | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) -> ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 80 | 2 79 | sylan2b | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. ZZ ) -> ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 81 | 1 80 | biimtrid | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. ZZ ) -> ( N e. ZZ -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 82 | 81 | impr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |