This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is a shift of A by C , then A is a shift of B by -u C . (Contributed by Mario Carneiro, 22-Mar-2014) (Revised by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolshft.1 | |- ( ph -> A C_ RR ) |
|
| ovolshft.2 | |- ( ph -> C e. RR ) |
||
| ovolshft.3 | |- ( ph -> B = { x e. RR | ( x - C ) e. A } ) |
||
| Assertion | shft2rab | |- ( ph -> A = { y e. RR | ( y - -u C ) e. B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolshft.1 | |- ( ph -> A C_ RR ) |
|
| 2 | ovolshft.2 | |- ( ph -> C e. RR ) |
|
| 3 | ovolshft.3 | |- ( ph -> B = { x e. RR | ( x - C ) e. A } ) |
|
| 4 | 1 | sseld | |- ( ph -> ( y e. A -> y e. RR ) ) |
| 5 | 4 | pm4.71rd | |- ( ph -> ( y e. A <-> ( y e. RR /\ y e. A ) ) ) |
| 6 | recn | |- ( y e. RR -> y e. CC ) |
|
| 7 | 2 | recnd | |- ( ph -> C e. CC ) |
| 8 | subneg | |- ( ( y e. CC /\ C e. CC ) -> ( y - -u C ) = ( y + C ) ) |
|
| 9 | 6 7 8 | syl2anr | |- ( ( ph /\ y e. RR ) -> ( y - -u C ) = ( y + C ) ) |
| 10 | 3 | adantr | |- ( ( ph /\ y e. RR ) -> B = { x e. RR | ( x - C ) e. A } ) |
| 11 | 9 10 | eleq12d | |- ( ( ph /\ y e. RR ) -> ( ( y - -u C ) e. B <-> ( y + C ) e. { x e. RR | ( x - C ) e. A } ) ) |
| 12 | id | |- ( y e. RR -> y e. RR ) |
|
| 13 | readdcl | |- ( ( y e. RR /\ C e. RR ) -> ( y + C ) e. RR ) |
|
| 14 | 12 2 13 | syl2anr | |- ( ( ph /\ y e. RR ) -> ( y + C ) e. RR ) |
| 15 | oveq1 | |- ( x = ( y + C ) -> ( x - C ) = ( ( y + C ) - C ) ) |
|
| 16 | 15 | eleq1d | |- ( x = ( y + C ) -> ( ( x - C ) e. A <-> ( ( y + C ) - C ) e. A ) ) |
| 17 | 16 | elrab3 | |- ( ( y + C ) e. RR -> ( ( y + C ) e. { x e. RR | ( x - C ) e. A } <-> ( ( y + C ) - C ) e. A ) ) |
| 18 | 14 17 | syl | |- ( ( ph /\ y e. RR ) -> ( ( y + C ) e. { x e. RR | ( x - C ) e. A } <-> ( ( y + C ) - C ) e. A ) ) |
| 19 | pncan | |- ( ( y e. CC /\ C e. CC ) -> ( ( y + C ) - C ) = y ) |
|
| 20 | 6 7 19 | syl2anr | |- ( ( ph /\ y e. RR ) -> ( ( y + C ) - C ) = y ) |
| 21 | 20 | eleq1d | |- ( ( ph /\ y e. RR ) -> ( ( ( y + C ) - C ) e. A <-> y e. A ) ) |
| 22 | 11 18 21 | 3bitrd | |- ( ( ph /\ y e. RR ) -> ( ( y - -u C ) e. B <-> y e. A ) ) |
| 23 | 22 | pm5.32da | |- ( ph -> ( ( y e. RR /\ ( y - -u C ) e. B ) <-> ( y e. RR /\ y e. A ) ) ) |
| 24 | 5 23 | bitr4d | |- ( ph -> ( y e. A <-> ( y e. RR /\ ( y - -u C ) e. B ) ) ) |
| 25 | 24 | eqabdv | |- ( ph -> A = { y | ( y e. RR /\ ( y - -u C ) e. B ) } ) |
| 26 | df-rab | |- { y e. RR | ( y - -u C ) e. B } = { y | ( y e. RR /\ ( y - -u C ) e. B ) } |
|
| 27 | 25 26 | eqtr4di | |- ( ph -> A = { y e. RR | ( y - -u C ) e. B } ) |