This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | od1.1 | |- O = ( od ` G ) |
|
| od1.2 | |- .0. = ( 0g ` G ) |
||
| odeq1.3 | |- X = ( Base ` G ) |
||
| Assertion | odeq1 | |- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 1 <-> A = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | od1.1 | |- O = ( od ` G ) |
|
| 2 | od1.2 | |- .0. = ( 0g ` G ) |
|
| 3 | odeq1.3 | |- X = ( Base ` G ) |
|
| 4 | oveq1 | |- ( ( O ` A ) = 1 -> ( ( O ` A ) ( .g ` G ) A ) = ( 1 ( .g ` G ) A ) ) |
|
| 5 | 4 | eqcomd | |- ( ( O ` A ) = 1 -> ( 1 ( .g ` G ) A ) = ( ( O ` A ) ( .g ` G ) A ) ) |
| 6 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 7 | 3 6 | mulg1 | |- ( A e. X -> ( 1 ( .g ` G ) A ) = A ) |
| 8 | 3 1 6 2 | odid | |- ( A e. X -> ( ( O ` A ) ( .g ` G ) A ) = .0. ) |
| 9 | 7 8 | eqeq12d | |- ( A e. X -> ( ( 1 ( .g ` G ) A ) = ( ( O ` A ) ( .g ` G ) A ) <-> A = .0. ) ) |
| 10 | 9 | adantl | |- ( ( G e. Grp /\ A e. X ) -> ( ( 1 ( .g ` G ) A ) = ( ( O ` A ) ( .g ` G ) A ) <-> A = .0. ) ) |
| 11 | 5 10 | imbitrid | |- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 1 -> A = .0. ) ) |
| 12 | 1 2 | od1 | |- ( G e. Grp -> ( O ` .0. ) = 1 ) |
| 13 | 12 | adantr | |- ( ( G e. Grp /\ A e. X ) -> ( O ` .0. ) = 1 ) |
| 14 | fveqeq2 | |- ( A = .0. -> ( ( O ` A ) = 1 <-> ( O ` .0. ) = 1 ) ) |
|
| 15 | 13 14 | syl5ibrcom | |- ( ( G e. Grp /\ A e. X ) -> ( A = .0. -> ( O ` A ) = 1 ) ) |
| 16 | 11 15 | impbid | |- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 1 <-> A = .0. ) ) |