This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashsdom | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) < ( # ` B ) <-> A ~< B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 2 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 3 | nn0re | |- ( ( # ` A ) e. NN0 -> ( # ` A ) e. RR ) |
|
| 4 | nn0re | |- ( ( # ` B ) e. NN0 -> ( # ` B ) e. RR ) |
|
| 5 | ltlen | |- ( ( ( # ` A ) e. RR /\ ( # ` B ) e. RR ) -> ( ( # ` A ) < ( # ` B ) <-> ( ( # ` A ) <_ ( # ` B ) /\ ( # ` B ) =/= ( # ` A ) ) ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( ( # ` A ) e. NN0 /\ ( # ` B ) e. NN0 ) -> ( ( # ` A ) < ( # ` B ) <-> ( ( # ` A ) <_ ( # ` B ) /\ ( # ` B ) =/= ( # ` A ) ) ) ) |
| 7 | 1 2 6 | syl2an | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) < ( # ` B ) <-> ( ( # ` A ) <_ ( # ` B ) /\ ( # ` B ) =/= ( # ` A ) ) ) ) |
| 8 | hashdom | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) <_ ( # ` B ) <-> A ~<_ B ) ) |
|
| 9 | eqcom | |- ( ( # ` B ) = ( # ` A ) <-> ( # ` A ) = ( # ` B ) ) |
|
| 10 | hashen | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) ) |
|
| 11 | 9 10 | bitrid | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` B ) = ( # ` A ) <-> A ~~ B ) ) |
| 12 | 11 | necon3abid | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` B ) =/= ( # ` A ) <-> -. A ~~ B ) ) |
| 13 | 8 12 | anbi12d | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( ( # ` A ) <_ ( # ` B ) /\ ( # ` B ) =/= ( # ` A ) ) <-> ( A ~<_ B /\ -. A ~~ B ) ) ) |
| 14 | 7 13 | bitrd | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) < ( # ` B ) <-> ( A ~<_ B /\ -. A ~~ B ) ) ) |
| 15 | brsdom | |- ( A ~< B <-> ( A ~<_ B /\ -. A ~~ B ) ) |
|
| 16 | 14 15 | bitr4di | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) < ( # ` B ) <-> A ~< B ) ) |