This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of an element of a subgroup divides the order of the subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | odsubdvds.1 | |- O = ( od ` G ) |
|
| Assertion | odsubdvds | |- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( O ` A ) || ( # ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odsubdvds.1 | |- O = ( od ` G ) |
|
| 2 | eqid | |- ( G |`s S ) = ( G |`s S ) |
|
| 3 | 2 | subggrp | |- ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) |
| 4 | 3 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( G |`s S ) e. Grp ) |
| 5 | 2 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` ( G |`s S ) ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> S = ( Base ` ( G |`s S ) ) ) |
| 7 | simp2 | |- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> S e. Fin ) |
|
| 8 | 6 7 | eqeltrrd | |- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( Base ` ( G |`s S ) ) e. Fin ) |
| 9 | simp3 | |- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> A e. S ) |
|
| 10 | 9 6 | eleqtrd | |- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> A e. ( Base ` ( G |`s S ) ) ) |
| 11 | eqid | |- ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) |
|
| 12 | eqid | |- ( od ` ( G |`s S ) ) = ( od ` ( G |`s S ) ) |
|
| 13 | 11 12 | oddvds2 | |- ( ( ( G |`s S ) e. Grp /\ ( Base ` ( G |`s S ) ) e. Fin /\ A e. ( Base ` ( G |`s S ) ) ) -> ( ( od ` ( G |`s S ) ) ` A ) || ( # ` ( Base ` ( G |`s S ) ) ) ) |
| 14 | 4 8 10 13 | syl3anc | |- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( ( od ` ( G |`s S ) ) ` A ) || ( # ` ( Base ` ( G |`s S ) ) ) ) |
| 15 | 2 1 12 | subgod | |- ( ( S e. ( SubGrp ` G ) /\ A e. S ) -> ( O ` A ) = ( ( od ` ( G |`s S ) ) ` A ) ) |
| 16 | 15 | 3adant2 | |- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( O ` A ) = ( ( od ` ( G |`s S ) ) ` A ) ) |
| 17 | 6 | fveq2d | |- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( # ` S ) = ( # ` ( Base ` ( G |`s S ) ) ) ) |
| 18 | 14 16 17 | 3brtr4d | |- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( O ` A ) || ( # ` S ) ) |