This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdomdif | |- ( A ~< B -> ( B \ A ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | |- Rel ~< |
|
| 2 | 1 | brrelex1i | |- ( A ~< B -> A e. _V ) |
| 3 | ssdif0 | |- ( B C_ A <-> ( B \ A ) = (/) ) |
|
| 4 | ssdomg | |- ( A e. _V -> ( B C_ A -> B ~<_ A ) ) |
|
| 5 | domnsym | |- ( B ~<_ A -> -. A ~< B ) |
|
| 6 | 4 5 | syl6 | |- ( A e. _V -> ( B C_ A -> -. A ~< B ) ) |
| 7 | 3 6 | biimtrrid | |- ( A e. _V -> ( ( B \ A ) = (/) -> -. A ~< B ) ) |
| 8 | 2 7 | syl | |- ( A ~< B -> ( ( B \ A ) = (/) -> -. A ~< B ) ) |
| 9 | 8 | con2d | |- ( A ~< B -> ( A ~< B -> -. ( B \ A ) = (/) ) ) |
| 10 | 9 | pm2.43i | |- ( A ~< B -> -. ( B \ A ) = (/) ) |
| 11 | 10 | neqned | |- ( A ~< B -> ( B \ A ) =/= (/) ) |