This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in orthogonal complement of H subset. (Contributed by NM, 7-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ocel | |- ( H C_ ~H -> ( A e. ( _|_ ` H ) <-> ( A e. ~H /\ A. x e. H ( A .ih x ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocval | |- ( H C_ ~H -> ( _|_ ` H ) = { y e. ~H | A. x e. H ( y .ih x ) = 0 } ) |
|
| 2 | 1 | eleq2d | |- ( H C_ ~H -> ( A e. ( _|_ ` H ) <-> A e. { y e. ~H | A. x e. H ( y .ih x ) = 0 } ) ) |
| 3 | oveq1 | |- ( y = A -> ( y .ih x ) = ( A .ih x ) ) |
|
| 4 | 3 | eqeq1d | |- ( y = A -> ( ( y .ih x ) = 0 <-> ( A .ih x ) = 0 ) ) |
| 5 | 4 | ralbidv | |- ( y = A -> ( A. x e. H ( y .ih x ) = 0 <-> A. x e. H ( A .ih x ) = 0 ) ) |
| 6 | 5 | elrab | |- ( A e. { y e. ~H | A. x e. H ( y .ih x ) = 0 } <-> ( A e. ~H /\ A. x e. H ( A .ih x ) = 0 ) ) |
| 7 | 2 6 | bitrdi | |- ( H C_ ~H -> ( A e. ( _|_ ` H ) <-> ( A e. ~H /\ A. x e. H ( A .ih x ) = 0 ) ) ) |