This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of complement of Hilbert subset. Part of Remark 3.12 of Beran p. 107. (Contributed by NM, 8-Aug-2000) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | occl | |- ( A C_ ~H -> ( _|_ ` A ) e. CH ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocsh | |- ( A C_ ~H -> ( _|_ ` A ) e. SH ) |
|
| 2 | ax-hcompl | |- ( f e. Cauchy -> E. x e. ~H f ~~>v x ) |
|
| 3 | vex | |- f e. _V |
|
| 4 | vex | |- x e. _V |
|
| 5 | 3 4 | breldm | |- ( f ~~>v x -> f e. dom ~~>v ) |
| 6 | 5 | rexlimivw | |- ( E. x e. ~H f ~~>v x -> f e. dom ~~>v ) |
| 7 | 2 6 | syl | |- ( f e. Cauchy -> f e. dom ~~>v ) |
| 8 | 7 | ad2antlr | |- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> f e. dom ~~>v ) |
| 9 | hlimf | |- ~~>v : dom ~~>v --> ~H |
|
| 10 | 9 | ffvelcdmi | |- ( f e. dom ~~>v -> ( ~~>v ` f ) e. ~H ) |
| 11 | 8 10 | syl | |- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> ( ~~>v ` f ) e. ~H ) |
| 12 | simplll | |- ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> A C_ ~H ) |
|
| 13 | simpllr | |- ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> f e. Cauchy ) |
|
| 14 | simplr | |- ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> f : NN --> ( _|_ ` A ) ) |
|
| 15 | simpr | |- ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> x e. A ) |
|
| 16 | 12 13 14 15 | occllem | |- ( ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) /\ x e. A ) -> ( ( ~~>v ` f ) .ih x ) = 0 ) |
| 17 | 16 | ralrimiva | |- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> A. x e. A ( ( ~~>v ` f ) .ih x ) = 0 ) |
| 18 | ocel | |- ( A C_ ~H -> ( ( ~~>v ` f ) e. ( _|_ ` A ) <-> ( ( ~~>v ` f ) e. ~H /\ A. x e. A ( ( ~~>v ` f ) .ih x ) = 0 ) ) ) |
|
| 19 | 18 | ad2antrr | |- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> ( ( ~~>v ` f ) e. ( _|_ ` A ) <-> ( ( ~~>v ` f ) e. ~H /\ A. x e. A ( ( ~~>v ` f ) .ih x ) = 0 ) ) ) |
| 20 | 11 17 19 | mpbir2and | |- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> ( ~~>v ` f ) e. ( _|_ ` A ) ) |
| 21 | ffun | |- ( ~~>v : dom ~~>v --> ~H -> Fun ~~>v ) |
|
| 22 | funfvbrb | |- ( Fun ~~>v -> ( f e. dom ~~>v <-> f ~~>v ( ~~>v ` f ) ) ) |
|
| 23 | 9 21 22 | mp2b | |- ( f e. dom ~~>v <-> f ~~>v ( ~~>v ` f ) ) |
| 24 | 8 23 | sylib | |- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> f ~~>v ( ~~>v ` f ) ) |
| 25 | breq2 | |- ( x = ( ~~>v ` f ) -> ( f ~~>v x <-> f ~~>v ( ~~>v ` f ) ) ) |
|
| 26 | 25 | rspcev | |- ( ( ( ~~>v ` f ) e. ( _|_ ` A ) /\ f ~~>v ( ~~>v ` f ) ) -> E. x e. ( _|_ ` A ) f ~~>v x ) |
| 27 | 20 24 26 | syl2anc | |- ( ( ( A C_ ~H /\ f e. Cauchy ) /\ f : NN --> ( _|_ ` A ) ) -> E. x e. ( _|_ ` A ) f ~~>v x ) |
| 28 | 27 | ex | |- ( ( A C_ ~H /\ f e. Cauchy ) -> ( f : NN --> ( _|_ ` A ) -> E. x e. ( _|_ ` A ) f ~~>v x ) ) |
| 29 | 28 | ralrimiva | |- ( A C_ ~H -> A. f e. Cauchy ( f : NN --> ( _|_ ` A ) -> E. x e. ( _|_ ` A ) f ~~>v x ) ) |
| 30 | isch3 | |- ( ( _|_ ` A ) e. CH <-> ( ( _|_ ` A ) e. SH /\ A. f e. Cauchy ( f : NN --> ( _|_ ` A ) -> E. x e. ( _|_ ` A ) f ~~>v x ) ) ) |
|
| 31 | 1 29 30 | sylanbrc | |- ( A C_ ~H -> ( _|_ ` A ) e. CH ) |