This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product is jointly continuous in both arguments. (Contributed by NM, 21-Aug-2007) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dipcn.p | |- P = ( .iOLD ` U ) |
|
| dipcn.c | |- C = ( IndMet ` U ) |
||
| dipcn.j | |- J = ( MetOpen ` C ) |
||
| dipcn.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | dipcn | |- ( U e. NrmCVec -> P e. ( ( J tX J ) Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipcn.p | |- P = ( .iOLD ` U ) |
|
| 2 | dipcn.c | |- C = ( IndMet ` U ) |
|
| 3 | dipcn.j | |- J = ( MetOpen ` C ) |
|
| 4 | dipcn.k | |- K = ( TopOpen ` CCfld ) |
|
| 5 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 6 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 7 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 8 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 9 | 5 6 7 8 1 | dipfval | |- ( U e. NrmCVec -> P = ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) ) ) |
| 10 | 5 2 | imsxmet | |- ( U e. NrmCVec -> C e. ( *Met ` ( BaseSet ` U ) ) ) |
| 11 | 3 | mopntopon | |- ( C e. ( *Met ` ( BaseSet ` U ) ) -> J e. ( TopOn ` ( BaseSet ` U ) ) ) |
| 12 | 10 11 | syl | |- ( U e. NrmCVec -> J e. ( TopOn ` ( BaseSet ` U ) ) ) |
| 13 | fzfid | |- ( U e. NrmCVec -> ( 1 ... 4 ) e. Fin ) |
|
| 14 | 12 | adantr | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> J e. ( TopOn ` ( BaseSet ` U ) ) ) |
| 15 | 4 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 16 | 15 | a1i | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> K e. ( TopOn ` CC ) ) |
| 17 | ax-icn | |- _i e. CC |
|
| 18 | elfznn | |- ( k e. ( 1 ... 4 ) -> k e. NN ) |
|
| 19 | 18 | adantl | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> k e. NN ) |
| 20 | 19 | nnnn0d | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> k e. NN0 ) |
| 21 | expcl | |- ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
|
| 22 | 17 20 21 | sylancr | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( _i ^ k ) e. CC ) |
| 23 | 14 14 16 22 | cnmpt2c | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> ( _i ^ k ) ) e. ( ( J tX J ) Cn K ) ) |
| 24 | 14 14 | cnmpt1st | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> x ) e. ( ( J tX J ) Cn J ) ) |
| 25 | 14 14 | cnmpt2nd | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> y ) e. ( ( J tX J ) Cn J ) ) |
| 26 | 2 3 7 4 | smcn | |- ( U e. NrmCVec -> ( .sOLD ` U ) e. ( ( K tX J ) Cn J ) ) |
| 27 | 26 | adantr | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( .sOLD ` U ) e. ( ( K tX J ) Cn J ) ) |
| 28 | 14 14 23 25 27 | cnmpt22f | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> ( ( _i ^ k ) ( .sOLD ` U ) y ) ) e. ( ( J tX J ) Cn J ) ) |
| 29 | 2 3 6 | vacn | |- ( U e. NrmCVec -> ( +v ` U ) e. ( ( J tX J ) Cn J ) ) |
| 30 | 29 | adantr | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( +v ` U ) e. ( ( J tX J ) Cn J ) ) |
| 31 | 14 14 24 28 30 | cnmpt22f | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) e. ( ( J tX J ) Cn J ) ) |
| 32 | 8 2 3 4 | nmcnc | |- ( U e. NrmCVec -> ( normCV ` U ) e. ( J Cn K ) ) |
| 33 | 32 | adantr | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( normCV ` U ) e. ( J Cn K ) ) |
| 34 | 14 14 31 33 | cnmpt21f | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ) e. ( ( J tX J ) Cn K ) ) |
| 35 | 4 | sqcn | |- ( z e. CC |-> ( z ^ 2 ) ) e. ( K Cn K ) |
| 36 | 35 | a1i | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( z e. CC |-> ( z ^ 2 ) ) e. ( K Cn K ) ) |
| 37 | oveq1 | |- ( z = ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) -> ( z ^ 2 ) = ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) |
|
| 38 | 14 14 34 16 36 37 | cnmpt21 | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) e. ( ( J tX J ) Cn K ) ) |
| 39 | 4 | mulcn | |- x. e. ( ( K tX K ) Cn K ) |
| 40 | 39 | a1i | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> x. e. ( ( K tX K ) Cn K ) ) |
| 41 | 14 14 23 38 40 | cnmpt22f | |- ( ( U e. NrmCVec /\ k e. ( 1 ... 4 ) ) -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) ) e. ( ( J tX J ) Cn K ) ) |
| 42 | 4 12 13 12 41 | fsum2cn | |- ( U e. NrmCVec -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) ) e. ( ( J tX J ) Cn K ) ) |
| 43 | 15 | a1i | |- ( U e. NrmCVec -> K e. ( TopOn ` CC ) ) |
| 44 | 4cn | |- 4 e. CC |
|
| 45 | 4ne0 | |- 4 =/= 0 |
|
| 46 | 4 | divccn | |- ( ( 4 e. CC /\ 4 =/= 0 ) -> ( z e. CC |-> ( z / 4 ) ) e. ( K Cn K ) ) |
| 47 | 44 45 46 | mp2an | |- ( z e. CC |-> ( z / 4 ) ) e. ( K Cn K ) |
| 48 | 47 | a1i | |- ( U e. NrmCVec -> ( z e. CC |-> ( z / 4 ) ) e. ( K Cn K ) ) |
| 49 | oveq1 | |- ( z = sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) -> ( z / 4 ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) ) |
|
| 50 | 12 12 42 43 48 49 | cnmpt21 | |- ( U e. NrmCVec -> ( x e. ( BaseSet ` U ) , y e. ( BaseSet ` U ) |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) ) e. ( ( J tX J ) Cn K ) ) |
| 51 | 9 50 | eqeltrd | |- ( U e. NrmCVec -> P e. ( ( J tX J ) Cn K ) ) |