This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
| Assertion | hhip | |- .ih = ( .iOLD ` U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | polid | |- ( ( x e. ~H /\ y e. ~H ) -> ( x .ih y ) = ( ( ( ( ( normh ` ( x +h y ) ) ^ 2 ) - ( ( normh ` ( x -h y ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( x +h ( _i .h y ) ) ) ^ 2 ) - ( ( normh ` ( x -h ( _i .h y ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
|
| 3 | 1 | hhnv | |- U e. NrmCVec |
| 4 | 1 | hhba | |- ~H = ( BaseSet ` U ) |
| 5 | 1 | hhva | |- +h = ( +v ` U ) |
| 6 | 1 | hhsm | |- .h = ( .sOLD ` U ) |
| 7 | 1 | hhnm | |- normh = ( normCV ` U ) |
| 8 | eqid | |- ( .iOLD ` U ) = ( .iOLD ` U ) |
|
| 9 | 1 | hhvs | |- -h = ( -v ` U ) |
| 10 | 4 5 6 7 8 9 | ipval3 | |- ( ( U e. NrmCVec /\ x e. ~H /\ y e. ~H ) -> ( x ( .iOLD ` U ) y ) = ( ( ( ( ( normh ` ( x +h y ) ) ^ 2 ) - ( ( normh ` ( x -h y ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( x +h ( _i .h y ) ) ) ^ 2 ) - ( ( normh ` ( x -h ( _i .h y ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 11 | 3 10 | mp3an1 | |- ( ( x e. ~H /\ y e. ~H ) -> ( x ( .iOLD ` U ) y ) = ( ( ( ( ( normh ` ( x +h y ) ) ^ 2 ) - ( ( normh ` ( x -h y ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( x +h ( _i .h y ) ) ) ^ 2 ) - ( ( normh ` ( x -h ( _i .h y ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 12 | 2 11 | eqtr4d | |- ( ( x e. ~H /\ y e. ~H ) -> ( x .ih y ) = ( x ( .iOLD ` U ) y ) ) |
| 13 | 12 | rgen2 | |- A. x e. ~H A. y e. ~H ( x .ih y ) = ( x ( .iOLD ` U ) y ) |
| 14 | ax-hfi | |- .ih : ( ~H X. ~H ) --> CC |
|
| 15 | 4 8 | ipf | |- ( U e. NrmCVec -> ( .iOLD ` U ) : ( ~H X. ~H ) --> CC ) |
| 16 | 3 15 | ax-mp | |- ( .iOLD ` U ) : ( ~H X. ~H ) --> CC |
| 17 | ffn | |- ( .ih : ( ~H X. ~H ) --> CC -> .ih Fn ( ~H X. ~H ) ) |
|
| 18 | ffn | |- ( ( .iOLD ` U ) : ( ~H X. ~H ) --> CC -> ( .iOLD ` U ) Fn ( ~H X. ~H ) ) |
|
| 19 | eqfnov2 | |- ( ( .ih Fn ( ~H X. ~H ) /\ ( .iOLD ` U ) Fn ( ~H X. ~H ) ) -> ( .ih = ( .iOLD ` U ) <-> A. x e. ~H A. y e. ~H ( x .ih y ) = ( x ( .iOLD ` U ) y ) ) ) |
|
| 20 | 17 18 19 | syl2an | |- ( ( .ih : ( ~H X. ~H ) --> CC /\ ( .iOLD ` U ) : ( ~H X. ~H ) --> CC ) -> ( .ih = ( .iOLD ` U ) <-> A. x e. ~H A. y e. ~H ( x .ih y ) = ( x ( .iOLD ` U ) y ) ) ) |
| 21 | 14 16 20 | mp2an | |- ( .ih = ( .iOLD ` U ) <-> A. x e. ~H A. y e. ~H ( x .ih y ) = ( x ( .iOLD ` U ) y ) ) |
| 22 | 13 21 | mpbir | |- .ih = ( .iOLD ` U ) |