This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmcnp.3 | |- ( ph -> F ( ~~>t ` J ) P ) |
|
| lmcn.4 | |- ( ph -> G e. ( J Cn K ) ) |
||
| Assertion | lmcn | |- ( ph -> ( G o. F ) ( ~~>t ` K ) ( G ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcnp.3 | |- ( ph -> F ( ~~>t ` J ) P ) |
|
| 2 | lmcn.4 | |- ( ph -> G e. ( J Cn K ) ) |
|
| 3 | cntop1 | |- ( G e. ( J Cn K ) -> J e. Top ) |
|
| 4 | 2 3 | syl | |- ( ph -> J e. Top ) |
| 5 | toptopon2 | |- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
|
| 6 | 4 5 | sylib | |- ( ph -> J e. ( TopOn ` U. J ) ) |
| 7 | lmcl | |- ( ( J e. ( TopOn ` U. J ) /\ F ( ~~>t ` J ) P ) -> P e. U. J ) |
|
| 8 | 6 1 7 | syl2anc | |- ( ph -> P e. U. J ) |
| 9 | eqid | |- U. J = U. J |
|
| 10 | 9 | cncnpi | |- ( ( G e. ( J Cn K ) /\ P e. U. J ) -> G e. ( ( J CnP K ) ` P ) ) |
| 11 | 2 8 10 | syl2anc | |- ( ph -> G e. ( ( J CnP K ) ` P ) ) |
| 12 | 1 11 | lmcnp | |- ( ph -> ( G o. F ) ( ~~>t ` K ) ( G ` P ) ) |