This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for ordinal addition. Proposition 8.2 of TakeutiZaring p. 57. Remark 2.8 of Schloeder p. 5. (Contributed by NM, 5-May-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oacl | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = (/) -> ( A +o x ) = ( A +o (/) ) ) |
|
| 2 | 1 | eleq1d | |- ( x = (/) -> ( ( A +o x ) e. On <-> ( A +o (/) ) e. On ) ) |
| 3 | oveq2 | |- ( x = y -> ( A +o x ) = ( A +o y ) ) |
|
| 4 | 3 | eleq1d | |- ( x = y -> ( ( A +o x ) e. On <-> ( A +o y ) e. On ) ) |
| 5 | oveq2 | |- ( x = suc y -> ( A +o x ) = ( A +o suc y ) ) |
|
| 6 | 5 | eleq1d | |- ( x = suc y -> ( ( A +o x ) e. On <-> ( A +o suc y ) e. On ) ) |
| 7 | oveq2 | |- ( x = B -> ( A +o x ) = ( A +o B ) ) |
|
| 8 | 7 | eleq1d | |- ( x = B -> ( ( A +o x ) e. On <-> ( A +o B ) e. On ) ) |
| 9 | oa0 | |- ( A e. On -> ( A +o (/) ) = A ) |
|
| 10 | 9 | eleq1d | |- ( A e. On -> ( ( A +o (/) ) e. On <-> A e. On ) ) |
| 11 | 10 | ibir | |- ( A e. On -> ( A +o (/) ) e. On ) |
| 12 | onsuc | |- ( ( A +o y ) e. On -> suc ( A +o y ) e. On ) |
|
| 13 | oasuc | |- ( ( A e. On /\ y e. On ) -> ( A +o suc y ) = suc ( A +o y ) ) |
|
| 14 | 13 | eleq1d | |- ( ( A e. On /\ y e. On ) -> ( ( A +o suc y ) e. On <-> suc ( A +o y ) e. On ) ) |
| 15 | 12 14 | imbitrrid | |- ( ( A e. On /\ y e. On ) -> ( ( A +o y ) e. On -> ( A +o suc y ) e. On ) ) |
| 16 | 15 | expcom | |- ( y e. On -> ( A e. On -> ( ( A +o y ) e. On -> ( A +o suc y ) e. On ) ) ) |
| 17 | vex | |- x e. _V |
|
| 18 | iunon | |- ( ( x e. _V /\ A. y e. x ( A +o y ) e. On ) -> U_ y e. x ( A +o y ) e. On ) |
|
| 19 | 17 18 | mpan | |- ( A. y e. x ( A +o y ) e. On -> U_ y e. x ( A +o y ) e. On ) |
| 20 | oalim | |- ( ( A e. On /\ ( x e. _V /\ Lim x ) ) -> ( A +o x ) = U_ y e. x ( A +o y ) ) |
|
| 21 | 17 20 | mpanr1 | |- ( ( A e. On /\ Lim x ) -> ( A +o x ) = U_ y e. x ( A +o y ) ) |
| 22 | 21 | eleq1d | |- ( ( A e. On /\ Lim x ) -> ( ( A +o x ) e. On <-> U_ y e. x ( A +o y ) e. On ) ) |
| 23 | 19 22 | imbitrrid | |- ( ( A e. On /\ Lim x ) -> ( A. y e. x ( A +o y ) e. On -> ( A +o x ) e. On ) ) |
| 24 | 23 | expcom | |- ( Lim x -> ( A e. On -> ( A. y e. x ( A +o y ) e. On -> ( A +o x ) e. On ) ) ) |
| 25 | 2 4 6 8 11 16 24 | tfinds3 | |- ( B e. On -> ( A e. On -> ( A +o B ) e. On ) ) |
| 26 | 25 | impcom | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On ) |