This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of Suppes p. 228. (Contributed by NM, 3-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | onminsb.1 | |- F/ x ps |
|
| onminsb.2 | |- ( x = |^| { x e. On | ph } -> ( ph <-> ps ) ) |
||
| Assertion | onminsb | |- ( E. x e. On ph -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onminsb.1 | |- F/ x ps |
|
| 2 | onminsb.2 | |- ( x = |^| { x e. On | ph } -> ( ph <-> ps ) ) |
|
| 3 | rabn0 | |- ( { x e. On | ph } =/= (/) <-> E. x e. On ph ) |
|
| 4 | ssrab2 | |- { x e. On | ph } C_ On |
|
| 5 | onint | |- ( ( { x e. On | ph } C_ On /\ { x e. On | ph } =/= (/) ) -> |^| { x e. On | ph } e. { x e. On | ph } ) |
|
| 6 | 4 5 | mpan | |- ( { x e. On | ph } =/= (/) -> |^| { x e. On | ph } e. { x e. On | ph } ) |
| 7 | 3 6 | sylbir | |- ( E. x e. On ph -> |^| { x e. On | ph } e. { x e. On | ph } ) |
| 8 | nfrab1 | |- F/_ x { x e. On | ph } |
|
| 9 | 8 | nfint | |- F/_ x |^| { x e. On | ph } |
| 10 | nfcv | |- F/_ x On |
|
| 11 | 9 10 1 2 | elrabf | |- ( |^| { x e. On | ph } e. { x e. On | ph } <-> ( |^| { x e. On | ph } e. On /\ ps ) ) |
| 12 | 11 | simprbi | |- ( |^| { x e. On | ph } e. { x e. On | ph } -> ps ) |
| 13 | 7 12 | syl | |- ( E. x e. On ph -> ps ) |