This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of TakeutiZaring p. 59 and its converse. See oawordeu for uniqueness. (Contributed by NM, 12-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oawordex | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> E. x e. On ( A +o x ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oawordeu | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> E! x e. On ( A +o x ) = B ) |
|
| 2 | 1 | ex | |- ( ( A e. On /\ B e. On ) -> ( A C_ B -> E! x e. On ( A +o x ) = B ) ) |
| 3 | reurex | |- ( E! x e. On ( A +o x ) = B -> E. x e. On ( A +o x ) = B ) |
|
| 4 | 2 3 | syl6 | |- ( ( A e. On /\ B e. On ) -> ( A C_ B -> E. x e. On ( A +o x ) = B ) ) |
| 5 | oawordexr | |- ( ( A e. On /\ E. x e. On ( A +o x ) = B ) -> A C_ B ) |
|
| 6 | 5 | ex | |- ( A e. On -> ( E. x e. On ( A +o x ) = B -> A C_ B ) ) |
| 7 | 6 | adantr | |- ( ( A e. On /\ B e. On ) -> ( E. x e. On ( A +o x ) = B -> A C_ B ) ) |
| 8 | 4 7 | impbid | |- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> E. x e. On ( A +o x ) = B ) ) |