This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is less than or equal to its sum with another. Theorem 21 of Suppes p. 209. Lemma 3.3 of Schloeder p. 7. (Contributed by NM, 7-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaword2 | |- ( ( A e. On /\ B e. On ) -> A C_ ( B +o A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | |- (/) C_ B |
|
| 2 | 0elon | |- (/) e. On |
|
| 3 | oawordri | |- ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) C_ B -> ( (/) +o A ) C_ ( B +o A ) ) ) |
|
| 4 | 2 3 | mp3an1 | |- ( ( B e. On /\ A e. On ) -> ( (/) C_ B -> ( (/) +o A ) C_ ( B +o A ) ) ) |
| 5 | oa0r | |- ( A e. On -> ( (/) +o A ) = A ) |
|
| 6 | 5 | adantl | |- ( ( B e. On /\ A e. On ) -> ( (/) +o A ) = A ) |
| 7 | 6 | sseq1d | |- ( ( B e. On /\ A e. On ) -> ( ( (/) +o A ) C_ ( B +o A ) <-> A C_ ( B +o A ) ) ) |
| 8 | 4 7 | sylibd | |- ( ( B e. On /\ A e. On ) -> ( (/) C_ B -> A C_ ( B +o A ) ) ) |
| 9 | 1 8 | mpi | |- ( ( B e. On /\ A e. On ) -> A C_ ( B +o A ) ) |
| 10 | 9 | ancoms | |- ( ( A e. On /\ B e. On ) -> A C_ ( B +o A ) ) |