This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left cancellation law for ordinal addition. Corollary 8.5 of TakeutiZaring p. 58. (Contributed by NM, 5-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oacan | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +o B ) = ( A +o C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oaord | |- ( ( B e. On /\ C e. On /\ A e. On ) -> ( B e. C <-> ( A +o B ) e. ( A +o C ) ) ) |
|
| 2 | 1 | 3comr | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B e. C <-> ( A +o B ) e. ( A +o C ) ) ) |
| 3 | oaord | |- ( ( C e. On /\ B e. On /\ A e. On ) -> ( C e. B <-> ( A +o C ) e. ( A +o B ) ) ) |
|
| 4 | 3 | 3com13 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( C e. B <-> ( A +o C ) e. ( A +o B ) ) ) |
| 5 | 2 4 | orbi12d | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( B e. C \/ C e. B ) <-> ( ( A +o B ) e. ( A +o C ) \/ ( A +o C ) e. ( A +o B ) ) ) ) |
| 6 | 5 | notbid | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( -. ( B e. C \/ C e. B ) <-> -. ( ( A +o B ) e. ( A +o C ) \/ ( A +o C ) e. ( A +o B ) ) ) ) |
| 7 | eloni | |- ( B e. On -> Ord B ) |
|
| 8 | eloni | |- ( C e. On -> Ord C ) |
|
| 9 | ordtri3 | |- ( ( Ord B /\ Ord C ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( B e. On /\ C e. On ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
| 11 | 10 | 3adant1 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
| 12 | oacl | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On ) |
|
| 13 | eloni | |- ( ( A +o B ) e. On -> Ord ( A +o B ) ) |
|
| 14 | 12 13 | syl | |- ( ( A e. On /\ B e. On ) -> Ord ( A +o B ) ) |
| 15 | oacl | |- ( ( A e. On /\ C e. On ) -> ( A +o C ) e. On ) |
|
| 16 | eloni | |- ( ( A +o C ) e. On -> Ord ( A +o C ) ) |
|
| 17 | 15 16 | syl | |- ( ( A e. On /\ C e. On ) -> Ord ( A +o C ) ) |
| 18 | ordtri3 | |- ( ( Ord ( A +o B ) /\ Ord ( A +o C ) ) -> ( ( A +o B ) = ( A +o C ) <-> -. ( ( A +o B ) e. ( A +o C ) \/ ( A +o C ) e. ( A +o B ) ) ) ) |
|
| 19 | 14 17 18 | syl2an | |- ( ( ( A e. On /\ B e. On ) /\ ( A e. On /\ C e. On ) ) -> ( ( A +o B ) = ( A +o C ) <-> -. ( ( A +o B ) e. ( A +o C ) \/ ( A +o C ) e. ( A +o B ) ) ) ) |
| 20 | 19 | 3impdi | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +o B ) = ( A +o C ) <-> -. ( ( A +o B ) e. ( A +o C ) \/ ( A +o C ) e. ( A +o B ) ) ) ) |
| 21 | 6 11 20 | 3bitr4rd | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +o B ) = ( A +o C ) <-> B = C ) ) |