This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of TakeutiZaring p. 59. (Contributed by NM, 11-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oawordeu | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> E! x e. On ( A +o x ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | |- ( A = if ( A e. On , A , (/) ) -> ( A C_ B <-> if ( A e. On , A , (/) ) C_ B ) ) |
|
| 2 | oveq1 | |- ( A = if ( A e. On , A , (/) ) -> ( A +o x ) = ( if ( A e. On , A , (/) ) +o x ) ) |
|
| 3 | 2 | eqeq1d | |- ( A = if ( A e. On , A , (/) ) -> ( ( A +o x ) = B <-> ( if ( A e. On , A , (/) ) +o x ) = B ) ) |
| 4 | 3 | reubidv | |- ( A = if ( A e. On , A , (/) ) -> ( E! x e. On ( A +o x ) = B <-> E! x e. On ( if ( A e. On , A , (/) ) +o x ) = B ) ) |
| 5 | 1 4 | imbi12d | |- ( A = if ( A e. On , A , (/) ) -> ( ( A C_ B -> E! x e. On ( A +o x ) = B ) <-> ( if ( A e. On , A , (/) ) C_ B -> E! x e. On ( if ( A e. On , A , (/) ) +o x ) = B ) ) ) |
| 6 | sseq2 | |- ( B = if ( B e. On , B , (/) ) -> ( if ( A e. On , A , (/) ) C_ B <-> if ( A e. On , A , (/) ) C_ if ( B e. On , B , (/) ) ) ) |
|
| 7 | eqeq2 | |- ( B = if ( B e. On , B , (/) ) -> ( ( if ( A e. On , A , (/) ) +o x ) = B <-> ( if ( A e. On , A , (/) ) +o x ) = if ( B e. On , B , (/) ) ) ) |
|
| 8 | 7 | reubidv | |- ( B = if ( B e. On , B , (/) ) -> ( E! x e. On ( if ( A e. On , A , (/) ) +o x ) = B <-> E! x e. On ( if ( A e. On , A , (/) ) +o x ) = if ( B e. On , B , (/) ) ) ) |
| 9 | 6 8 | imbi12d | |- ( B = if ( B e. On , B , (/) ) -> ( ( if ( A e. On , A , (/) ) C_ B -> E! x e. On ( if ( A e. On , A , (/) ) +o x ) = B ) <-> ( if ( A e. On , A , (/) ) C_ if ( B e. On , B , (/) ) -> E! x e. On ( if ( A e. On , A , (/) ) +o x ) = if ( B e. On , B , (/) ) ) ) ) |
| 10 | 0elon | |- (/) e. On |
|
| 11 | 10 | elimel | |- if ( A e. On , A , (/) ) e. On |
| 12 | 10 | elimel | |- if ( B e. On , B , (/) ) e. On |
| 13 | eqid | |- { y e. On | if ( B e. On , B , (/) ) C_ ( if ( A e. On , A , (/) ) +o y ) } = { y e. On | if ( B e. On , B , (/) ) C_ ( if ( A e. On , A , (/) ) +o y ) } |
|
| 14 | 11 12 13 | oawordeulem | |- ( if ( A e. On , A , (/) ) C_ if ( B e. On , B , (/) ) -> E! x e. On ( if ( A e. On , A , (/) ) +o x ) = if ( B e. On , B , (/) ) ) |
| 15 | 5 9 14 | dedth2h | |- ( ( A e. On /\ B e. On ) -> ( A C_ B -> E! x e. On ( A +o x ) = B ) ) |
| 16 | 15 | imp | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> E! x e. On ( A +o x ) = B ) |