This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcfnex.1 | |- T e. LinFn |
|
| nmcfnex.2 | |- T e. ContFn |
||
| Assertion | nmcfnlbi | |- ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcfnex.1 | |- T e. LinFn |
|
| 2 | nmcfnex.2 | |- T e. ContFn |
|
| 3 | fveq2 | |- ( A = 0h -> ( T ` A ) = ( T ` 0h ) ) |
|
| 4 | 1 | lnfn0i | |- ( T ` 0h ) = 0 |
| 5 | 3 4 | eqtrdi | |- ( A = 0h -> ( T ` A ) = 0 ) |
| 6 | 5 | abs00bd | |- ( A = 0h -> ( abs ` ( T ` A ) ) = 0 ) |
| 7 | 0le0 | |- 0 <_ 0 |
|
| 8 | fveq2 | |- ( A = 0h -> ( normh ` A ) = ( normh ` 0h ) ) |
|
| 9 | norm0 | |- ( normh ` 0h ) = 0 |
|
| 10 | 8 9 | eqtrdi | |- ( A = 0h -> ( normh ` A ) = 0 ) |
| 11 | 10 | oveq2d | |- ( A = 0h -> ( ( normfn ` T ) x. ( normh ` A ) ) = ( ( normfn ` T ) x. 0 ) ) |
| 12 | 1 2 | nmcfnexi | |- ( normfn ` T ) e. RR |
| 13 | 12 | recni | |- ( normfn ` T ) e. CC |
| 14 | 13 | mul01i | |- ( ( normfn ` T ) x. 0 ) = 0 |
| 15 | 11 14 | eqtr2di | |- ( A = 0h -> 0 = ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 16 | 7 15 | breqtrid | |- ( A = 0h -> 0 <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 17 | 6 16 | eqbrtrd | |- ( A = 0h -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 18 | 17 | adantl | |- ( ( A e. ~H /\ A = 0h ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 19 | 1 | lnfnfi | |- T : ~H --> CC |
| 20 | 19 | ffvelcdmi | |- ( A e. ~H -> ( T ` A ) e. CC ) |
| 21 | 20 | abscld | |- ( A e. ~H -> ( abs ` ( T ` A ) ) e. RR ) |
| 22 | 21 | adantr | |- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` A ) ) e. RR ) |
| 23 | 22 | recnd | |- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` A ) ) e. CC ) |
| 24 | normcl | |- ( A e. ~H -> ( normh ` A ) e. RR ) |
|
| 25 | 24 | adantr | |- ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` A ) e. RR ) |
| 26 | 25 | recnd | |- ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` A ) e. CC ) |
| 27 | norm-i | |- ( A e. ~H -> ( ( normh ` A ) = 0 <-> A = 0h ) ) |
|
| 28 | 27 | notbid | |- ( A e. ~H -> ( -. ( normh ` A ) = 0 <-> -. A = 0h ) ) |
| 29 | 28 | biimpar | |- ( ( A e. ~H /\ -. A = 0h ) -> -. ( normh ` A ) = 0 ) |
| 30 | 29 | neqned | |- ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` A ) =/= 0 ) |
| 31 | 23 26 30 | divrec2d | |- ( ( A e. ~H /\ -. A = 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) ) |
| 32 | 25 30 | rereccld | |- ( ( A e. ~H /\ -. A = 0h ) -> ( 1 / ( normh ` A ) ) e. RR ) |
| 33 | 32 | recnd | |- ( ( A e. ~H /\ -. A = 0h ) -> ( 1 / ( normh ` A ) ) e. CC ) |
| 34 | simpl | |- ( ( A e. ~H /\ -. A = 0h ) -> A e. ~H ) |
|
| 35 | 1 | lnfnmuli | |- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) |
| 36 | 33 34 35 | syl2anc | |- ( ( A e. ~H /\ -. A = 0h ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) |
| 37 | 36 | fveq2d | |- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( abs ` ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) ) |
| 38 | 20 | adantr | |- ( ( A e. ~H /\ -. A = 0h ) -> ( T ` A ) e. CC ) |
| 39 | 33 38 | absmuld | |- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( ( 1 / ( normh ` A ) ) x. ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( abs ` ( T ` A ) ) ) ) |
| 40 | df-ne | |- ( A =/= 0h <-> -. A = 0h ) |
|
| 41 | normgt0 | |- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
|
| 42 | 40 41 | bitr3id | |- ( A e. ~H -> ( -. A = 0h <-> 0 < ( normh ` A ) ) ) |
| 43 | 42 | biimpa | |- ( ( A e. ~H /\ -. A = 0h ) -> 0 < ( normh ` A ) ) |
| 44 | 25 43 | recgt0d | |- ( ( A e. ~H /\ -. A = 0h ) -> 0 < ( 1 / ( normh ` A ) ) ) |
| 45 | 0re | |- 0 e. RR |
|
| 46 | ltle | |- ( ( 0 e. RR /\ ( 1 / ( normh ` A ) ) e. RR ) -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
|
| 47 | 45 46 | mpan | |- ( ( 1 / ( normh ` A ) ) e. RR -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
| 48 | 32 44 47 | sylc | |- ( ( A e. ~H /\ -. A = 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
| 49 | 32 48 | absidd | |- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) ) |
| 50 | 49 | oveq1d | |- ( ( A e. ~H /\ -. A = 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( abs ` ( T ` A ) ) ) = ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) ) |
| 51 | 37 39 50 | 3eqtrrd | |- ( ( A e. ~H /\ -. A = 0h ) -> ( ( 1 / ( normh ` A ) ) x. ( abs ` ( T ` A ) ) ) = ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
| 52 | 31 51 | eqtrd | |- ( ( A e. ~H /\ -. A = 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) = ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
| 53 | hvmulcl | |- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
|
| 54 | 33 34 53 | syl2anc | |- ( ( A e. ~H /\ -. A = 0h ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
| 55 | normcl | |- ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
|
| 56 | 54 55 | syl | |- ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
| 57 | norm1 | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |
|
| 58 | 40 57 | sylan2br | |- ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |
| 59 | eqle | |- ( ( ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
|
| 60 | 56 58 59 | syl2anc | |- ( ( A e. ~H /\ -. A = 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
| 61 | nmfnlb | |- ( ( T : ~H --> CC /\ ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) ) |
|
| 62 | 19 61 | mp3an1 | |- ( ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) ) |
| 63 | 54 60 62 | syl2anc | |- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normfn ` T ) ) |
| 64 | 52 63 | eqbrtrd | |- ( ( A e. ~H /\ -. A = 0h ) -> ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) ) |
| 65 | 12 | a1i | |- ( ( A e. ~H /\ -. A = 0h ) -> ( normfn ` T ) e. RR ) |
| 66 | ledivmul2 | |- ( ( ( abs ` ( T ` A ) ) e. RR /\ ( normfn ` T ) e. RR /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> ( ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) <-> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) ) |
|
| 67 | 22 65 25 43 66 | syl112anc | |- ( ( A e. ~H /\ -. A = 0h ) -> ( ( ( abs ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normfn ` T ) <-> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) ) |
| 68 | 64 67 | mpbid | |- ( ( A e. ~H /\ -. A = 0h ) -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |
| 69 | 18 68 | pm2.61dan | |- ( A e. ~H -> ( abs ` ( T ` A ) ) <_ ( ( normfn ` T ) x. ( normh ` A ) ) ) |