This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmcfnex | |- ( ( T e. LinFn /\ T e. ContFn ) -> ( normfn ` T ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( T e. ( LinFn i^i ContFn ) <-> ( T e. LinFn /\ T e. ContFn ) ) |
|
| 2 | fveq2 | |- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( normfn ` T ) = ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) ) |
|
| 3 | 2 | eleq1d | |- ( T = if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) -> ( ( normfn ` T ) e. RR <-> ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) e. RR ) ) |
| 4 | 0lnfn | |- ( ~H X. { 0 } ) e. LinFn |
|
| 5 | 0cnfn | |- ( ~H X. { 0 } ) e. ContFn |
|
| 6 | elin | |- ( ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) <-> ( ( ~H X. { 0 } ) e. LinFn /\ ( ~H X. { 0 } ) e. ContFn ) ) |
|
| 7 | 4 5 6 | mpbir2an | |- ( ~H X. { 0 } ) e. ( LinFn i^i ContFn ) |
| 8 | 7 | elimel | |- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ( LinFn i^i ContFn ) |
| 9 | elin | |- ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ( LinFn i^i ContFn ) <-> ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn ) ) |
|
| 10 | 8 9 | mpbi | |- ( if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn /\ if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn ) |
| 11 | 10 | simpli | |- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. LinFn |
| 12 | 10 | simpri | |- if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) e. ContFn |
| 13 | 11 12 | nmcfnexi | |- ( normfn ` if ( T e. ( LinFn i^i ContFn ) , T , ( ~H X. { 0 } ) ) ) e. RR |
| 14 | 3 13 | dedth | |- ( T e. ( LinFn i^i ContFn ) -> ( normfn ` T ) e. RR ) |
| 15 | 1 14 | sylbir | |- ( ( T e. LinFn /\ T e. ContFn ) -> ( normfn ` T ) e. RR ) |