This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcfnex.1 | ⊢ 𝑇 ∈ LinFn | |
| nmcfnex.2 | ⊢ 𝑇 ∈ ContFn | ||
| Assertion | nmcfnlbi | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcfnex.1 | ⊢ 𝑇 ∈ LinFn | |
| 2 | nmcfnex.2 | ⊢ 𝑇 ∈ ContFn | |
| 3 | fveq2 | ⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = ( 𝑇 ‘ 0ℎ ) ) | |
| 4 | 1 | lnfn0i | ⊢ ( 𝑇 ‘ 0ℎ ) = 0 |
| 5 | 3 4 | eqtrdi | ⊢ ( 𝐴 = 0ℎ → ( 𝑇 ‘ 𝐴 ) = 0 ) |
| 6 | 5 | abs00bd | ⊢ ( 𝐴 = 0ℎ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = 0 ) |
| 7 | 0le0 | ⊢ 0 ≤ 0 | |
| 8 | fveq2 | ⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ 0ℎ ) ) | |
| 9 | norm0 | ⊢ ( normℎ ‘ 0ℎ ) = 0 | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝐴 = 0ℎ → ( normℎ ‘ 𝐴 ) = 0 ) |
| 11 | 10 | oveq2d | ⊢ ( 𝐴 = 0ℎ → ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normfn ‘ 𝑇 ) · 0 ) ) |
| 12 | 1 2 | nmcfnexi | ⊢ ( normfn ‘ 𝑇 ) ∈ ℝ |
| 13 | 12 | recni | ⊢ ( normfn ‘ 𝑇 ) ∈ ℂ |
| 14 | 13 | mul01i | ⊢ ( ( normfn ‘ 𝑇 ) · 0 ) = 0 |
| 15 | 11 14 | eqtr2di | ⊢ ( 𝐴 = 0ℎ → 0 = ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 16 | 7 15 | breqtrid | ⊢ ( 𝐴 = 0ℎ → 0 ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 17 | 6 16 | eqbrtrd | ⊢ ( 𝐴 = 0ℎ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 19 | 1 | lnfnfi | ⊢ 𝑇 : ℋ ⟶ ℂ |
| 20 | 19 | ffvelcdmi | ⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℂ ) |
| 21 | 20 | abscld | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
| 23 | 22 | recnd | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℂ ) |
| 24 | normcl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 26 | 25 | recnd | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normℎ ‘ 𝐴 ) ∈ ℂ ) |
| 27 | norm-i | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) = 0 ↔ 𝐴 = 0ℎ ) ) | |
| 28 | 27 | notbid | ⊢ ( 𝐴 ∈ ℋ → ( ¬ ( normℎ ‘ 𝐴 ) = 0 ↔ ¬ 𝐴 = 0ℎ ) ) |
| 29 | 28 | biimpar | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ¬ ( normℎ ‘ 𝐴 ) = 0 ) |
| 30 | 29 | neqned | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normℎ ‘ 𝐴 ) ≠ 0 ) |
| 31 | 23 26 30 | divrec2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 32 | 25 30 | rereccld | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) |
| 33 | 32 | recnd | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ) |
| 34 | simpl | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → 𝐴 ∈ ℋ ) | |
| 35 | 1 | lnfnmuli | ⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) |
| 36 | 33 34 35 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) |
| 37 | 36 | fveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) = ( abs ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 38 | 20 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℂ ) |
| 39 | 33 38 | absmuld | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( 𝑇 ‘ 𝐴 ) ) ) = ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 40 | df-ne | ⊢ ( 𝐴 ≠ 0ℎ ↔ ¬ 𝐴 = 0ℎ ) | |
| 41 | normgt0 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ≠ 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) | |
| 42 | 40 41 | bitr3id | ⊢ ( 𝐴 ∈ ℋ → ( ¬ 𝐴 = 0ℎ ↔ 0 < ( normℎ ‘ 𝐴 ) ) ) |
| 43 | 42 | biimpa | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → 0 < ( normℎ ‘ 𝐴 ) ) |
| 44 | 25 43 | recgt0d | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 45 | 0re | ⊢ 0 ∈ ℝ | |
| 46 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) | |
| 47 | 45 46 | mpan | ⊢ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℝ → ( 0 < ( 1 / ( normℎ ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) ) |
| 48 | 32 44 47 | sylc | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → 0 ≤ ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 49 | 32 48 | absidd | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) = ( 1 / ( normℎ ‘ 𝐴 ) ) ) |
| 50 | 49 | oveq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( abs ‘ ( 1 / ( normℎ ‘ 𝐴 ) ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) = ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 51 | 37 39 50 | 3eqtrrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) · ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ) = ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ) |
| 52 | 31 51 | eqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) = ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ) |
| 53 | hvmulcl | ⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) | |
| 54 | 33 34 53 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ) |
| 55 | normcl | ⊢ ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) | |
| 56 | 54 55 | syl | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ) |
| 57 | norm1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) | |
| 58 | 40 57 | sylan2br | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) |
| 59 | eqle | ⊢ ( ( ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ∈ ℝ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) = 1 ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) | |
| 60 | 56 58 59 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) |
| 61 | nmfnlb | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normfn ‘ 𝑇 ) ) | |
| 62 | 19 61 | mp3an1 | ⊢ ( ( ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normfn ‘ 𝑇 ) ) |
| 63 | 54 60 62 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ ( ( 1 / ( normℎ ‘ 𝐴 ) ) ·ℎ 𝐴 ) ) ) ≤ ( normfn ‘ 𝑇 ) ) |
| 64 | 52 63 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ) |
| 65 | 12 | a1i | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) |
| 66 | ledivmul2 | ⊢ ( ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( normℎ ‘ 𝐴 ) ) ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ↔ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) | |
| 67 | 22 65 25 43 66 | syl112anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) / ( normℎ ‘ 𝐴 ) ) ≤ ( normfn ‘ 𝑇 ) ↔ ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 68 | 64 67 | mpbid | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| 69 | 18 68 | pm2.61dan | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |